• Phosphonate as Stable Zinc-binding Group for Inhibitors of Clostridial Collagenase H (ColH) as Pathoblocker Agents.

      Voos, Katrin; Schönauer, Esther; Alhayek, Alaa; Haupenthal, Jörg; Andreas, Anastasia; Müller, Rolf; Hartmann, Rolf W; Brandstetter, Hans; Hirsch, Anna K H; Ducho, Christian; et al. (Wiley-VCH, 2021-01-27)
      Microbial infections are a significant threat to public health and resistances are on the rise, so new antibiotics with novel modes of action are urgently needed. The extracellular zinc metalloprotease collagenase H (ColH) from Clostridium histolyticum is a virulence factor that catalyzes tissue damage, leading to improved host invasion and colonisation. Besides the major role of ColH in pathogenicity, its extracellular localisation makes it a highly attractive target for the development of new antivirulence agents. Previously, we had found that a highly selective and potent thiol prodrug (with a hydrolytically cleavable thiocarbamate unit) provided efficient ColH inhibition. We now report the synthesis and biological evaluation of a range of zinc-binding group (ZBG) variants of this thiol-derived inhibitor, with the mercapto unit being replaced by other zinc ligands. Among these, an analogue with a phosphonate motif as ZBG showed promising activity against ColH, an improved selectivity profile, and significantly higher stability than the thiol reference compound, thus making it an attractive candidate for future drug development.
    • Potential Dental Biofilm Inhibitors: Dynamic Combinatorial Chemistry Affords Sugar-Based Molecules that Target Bacterial Glucosyltransferase.

      Hartman, Alwin M; Jumde, Varsha R; Elgaher, Walid A M; Te Poele, Evelien M; Dijkhuizen, Lubbert; Hirsch, Anna K H; HIPS, Helmholtz-Institut für Pharmazeutische Forschung Saarland, Universitätscampus E8.1 66123 Saarbrücken, Germany. (Wiley-VCH, 2020-06-16)
      We applied dynamic combinatorial chemistry (DCC) to find novel ligands of the bacterial virulence factor glucosyltransferase (GTF) 180. GTFs are the major producers of extracellular polysaccharides, which are important factors in the initiation and development of cariogenic dental biofilms. Following a structure-based strategy, we designed a series of 36 glucose- and maltose-based acylhydrazones as substrate mimics. Synthesis of the required mono- and disaccharide-based aldehydes set the stage for DCC experiments. Analysis of the dynamic combinatorial libraries (DCLs) by UPLC-MS revealed major amplification of four compounds in the presence of GTF180. Moreover, we found that derivatives of the glucose-acceptor maltose at the C1-hydroxy group act as glucose-donors and are cleaved by GTF180. The synthesized hits display medium to low binding affinity (KD values of 0.4-10.0 mm) according to surface plasmon resonance. In addition, they were investigated for inhibitory activity in GTF-activity assays. The early-stage DCC study reveals that careful design of DCLs opens up easy access to a broad class of novel compounds that can be developed further as potential inhibitors.
    • Preparation of nanosized coacervates of positive and negative starch derivatives intended for pulmonary delivery of proteins

      Barthold, S.; Kletting, S.; Taffner, J.; de Souza Carvalho-Wodarz, C.; Lepeltier, E.; Loretz, B.; Lehr, Claus Michael; Helmholtz-Institut für pharmaceutische Forschung Saarland, Universitätscampus E8.1, 66123 Saarbrücken, Germany. (2016)
    • Protein-Templated Dynamic Combinatorial Chemistry: Brief Overview and Experimental Protocol

      Hartman, Alwin M.; Gierse, Robin M.; Hirsch, Anna K. H.; HIPS, Helmholtz-Institut für Pharmazeutische Forschung Saarland, Universitätscampus E8.1 66123 Saarbrücken, Germany. (Wiley, 2019-05-03)
      Dynamic combinatorial chemistry (DCC) is a powerful tool to identify bioactive compounds. This efficient technique allows the target to select its own binders and circumvents the need for synthesis and biochemical evaluation of all individual derivatives. An ever‐increasing number of publications report the use of DCC on biologically relevant target proteins. This minireview complements previous reviews by focusing on the experimental protocol and giving detailed examples of essential steps and factors that need to be considered, such as protein stability, buffer composition and cosolvents.
    • Protein-Templated Hit Identification through an Ugi Four-Component Reaction.

      Mancini, Federica; Unver, M Yagiz; Elgaher, Walid A M; Jumde, Varsha R; Alhayek, Alaa; Lukat, Peer; Herrmann, Jennifer; Witte, Martin D; Köck, Matthias; Blankenfeldt, Wulf; et al. (Wiley-VCH, 2020-05-19)
    • Proteomic and Membrane Lipid Correlates of Reduced Host Defense Peptide.

      Kohler, Christian; Proctor, Richard A; Bayer, Arnold S; Yeaman, Michael R; Lalk, Michael; Engelmann, Susanne; Mishra, Nagendra N; HIPS, Helmholtz-Institut für Pharmazeutische Forschung Saarland, Universitätscampus E8.1 66123 Saarbrücken, Germany. (MPDI, 2019-09-28)
      We previously described a transposon mutant in Staphylococcus aureus strain SH1000 that exhibited reduced susceptibility to cationic thrombin-induced platelet microbicidal proteins (tPMPs). The transposon insertion site was mapped to the gene snoD, the staphylococcal nuo orthologue. Hence, further studies have been performed to understand how this mutation impacts susceptibility to tPMP, by comparing proteomics profiling and membrane lipid analyses of the parent vs. mutant strains. Surprisingly, the mutant showed differential regulation of only a single protein when cultivated aerobically (FadB), and only a small number of proteins under anaerobic growth conditions (AdhE, DapE, Ddh, Ald1, IlvA1, AgrA, Rot, SA2366, and SA2367). Corresponding to FadB impact on lipid remodeling, membrane fatty acid analyses showed that the snoD mutant contained more short chain anteiso-, but fewer short chain iso-branched chain fatty acids under both aerobic and anaerobic conditions vs. the parental strain. Based upon these proteomic and membrane compositional data, a hypothetical "network" model was developed to explain the impact of the snoD mutation upon tPMP susceptibility.
    • Quinazoline and tetrahydropyridothieno[2,3-d]pyrimidine derivatives as irreversible EGFR tyrosine kinase inhibitors: influence of the position 4 substituent

      Hamed, Mostafa M.; Abou El Ella, Dalal A.; Keeton, Adam B.; Piazza, Gary A.; Engel, Matthias; Hartmann, Rolf W.; Abadi, Ashraf H. (2013-08-20)
    • Rapid Discovery of Aspartyl Protease Inhibitors Using an Anchoring Approach.

      Konstantinidou, Markella; Magari, Francesca; Sutanto, Fandi; Haupenthal, Jörg; Jumde, Varsha R; Ünver, M Yagiz; Heine, Andreas; Camacho, Carlos Jamie; Hirsch, Anna K H; Klebe, Gerhard; et al. (Wiley-VCH, 2020-03-18)
      Pharmacophore searches that include anchors, fragments contributing above average to receptor binding, combined with one-step syntheses are a powerful approach for the fast discovery of novel bioactive molecules. Here, we are presenting a pipeline for the rapid and efficient discovery of aspartyl protease inhibitors. First, we hypothesized that hydrazine could be a multi-valent warhead to interact with the active site Asp carboxylic acids. We incorporated the hydrazine anchor in a multicomponent reaction and created a large virtual library of hydrazine derivatives synthetically accessible in one-step. Next, we performed anchor-based pharmacophore screening of the libraries and resynthesized top-ranked compounds. The inhibitory potency of the molecules was finally assessed by an enzyme activity assay and the binding mode confirmed by several soaked crystal structures supporting the validity of the hypothesis and approach. The herein reported pipeline of tools will be of general value for the rapid generation of receptor binders beyond Asp proteases.
    • A rapid synthesis of low-nanomolar divalent LecA inhibitors in four linear steps from d-galactose pentaacetate.

      Zahorska, Eva; Kuhaudomlarp, Sakonwan; Minervini, Saverio; Yousaf, Sultaan; Lepsik, Martin; Kinsinger, Thorsten; Hirsch, Anna K H; Imberty, Anne; Titz, Alexander; HIPS, Helmholtz-Institut für Pharmazeutische Forschung Saarland, Universitätscampus E8.1 66123 Saarbrücken, Germany. (Royal Sciety of Chemistry, 2020-07-06)
      Chronic infections with Pseudomonas aeruginosa are associated with the formation of bacterial biofilms. The tetrameric P. aeruginosa lectin LecA is a virulence factor and an anti-biofilm drug target. Increasing the overall binding affinity by multivalent presentation of binding epitopes can enhance the weak carbohydrate-ligand interactions. Low-nanomolar divalent LecA ligands/inhibitors with up to 260-fold valency-normalized potency boost and excellent selectivity over human galectin-1 were synthesized from d-galactose pentaacetate and benzaldehyde-based linkers in four linear steps.
    • Rational Adaptation of L3MBTL1 Inhibitors to Create Small-Molecule Cbx7 Antagonists.

      Simhadri, Chakravarthi; Daze, Kevin D; Douglas, Sarah F; Milosevich, Natalia; Monjas, Leticia; Dev, Amarjot; Brown, Tyler M; Hirsch, Anna K H; Wulff, Jeremy E; Hof, Fraser; et al. (Wiley, 2019-08-06)
      Chromobox homolog 7 (Cbx7) is an epigenetic modulator that is an important driver of multiple cancers. It is a methyl reader protein that operates by recognizing and binding to methylated lysine residues on specific partners. Herein we report our efforts to create low-molecular-weight inhibitors of Cbx7 by making rational structural adaptations to inhibitors of a different methyl reader protein, L3MBTL1, inhibitors that had previously been reported to be inactive against Cbx7. We evaluated each new inhibitor for Cbx7 inhibition by fluorescence polarization assay, and also confirmed the binding of selected inhibitors to Cbx7 by saturation-transfer difference NMR spectroscopy. This work identified multiple small-molecule inhibitors with modest (IC50 : 257-500 μm) potency.
    • Recent progress in pharmaceutical therapies for castration-resistant prostate cancer.

      Yin, Lina; Hu, Qingzhong; Hartmann, Rolf W; Pharmaceutical and Medicinal Chemistry, Saarland University & Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Campus C2-3, Saarbrücken D-66123, Germany. q.hu@mx.uni-saarland.de. (2013)
      Since 2010, six drugs have been approved for the treatment of castration-resistant prostate cancer, i.e., CYP17 inhibitor Abiraterone, androgen receptor antagonist Enzalutamide, cytotoxic agent Cabazitaxel, vaccine Sipuleucel-T, antibody Denosumab against receptor activator of nuclear factor kappa B ligand and radiopharmaceutical Alpharadin. All these drugs demonstrate improvement on overall survival, expect for Denosumab, which increases the bone mineral density of patients under androgen deprivation therapy and prolongs bone-metastasis-free survival. Besides further CYP17 inhibitors (Orteronel, Galeterone, VT-464 and CFG920), androgen receptor antagonists (ARN-509, ODM-201, AZD-3514 and EZN-4176) and vaccine Prostvac, more drug candidates with various mechanisms or new indications of launched drugs are currently under evaluation in different stages of clinical trials, including various kinase inhibitors and platinum complexes. Some novel strategies have also been proposed aimed at further potentiation of antitumor effects or reduction of side effects and complications related to treatments. Under these flourishing circumstances, more investigations should be performed on the optimal combination or the sequence of treatments needed to delay or reverse possible resistance and thus maximize the clinical benefits for the patients.
    • Regulation of Burkholderia cenocepacia biofilm formation by RpoN and the c-di-GMP effector BerB.

      Fazli, Mustafa; Rybtke, Morten; Steiner, Elisabeth; Weidel, Elisabeth; Berthelsen, Jens; Groizeleau, Julie; Bin, Wu; Zhi, Boo Zhao; Yaming, Zhang; Kaever, Volkhard; et al. (2017-04-16)
      Knowledge about the molecular mechanisms that are involved in the regulation of biofilm formation is essential for the development of biofilm-control measures. It is well established that the nucleotide second messenger cyclic diguanosine monophosphate (c-di-GMP) is a positive regulator of biofilm formation in many bacteria, but more knowledge about c-di-GMP effectors is needed. We provide evidence that c-di-GMP, the alternative sigma factor RpoN (σ54), and the enhancer-binding protein BerB play a role in biofilm formation of Burkholderia cenocepacia by regulating the production of a biofilm-stabilizing exopolysaccharide. Our findings suggest that BerB binds c-di-GMP, and activates RpoN-dependent transcription of the berA gene coding for a c-di-GMP-responsive transcriptional regulator. An increased level of the BerA protein in turn induces the production of biofilm-stabilizing exopolysaccharide in response to high c-di-GMP levels. Our findings imply that the production of biofilm exopolysaccharide in B. cenocepacia is regulated through a cascade involving two consecutive transcription events that are both activated by c-di-GMP. This type of regulation may allow tight control of the expenditure of cellular resources.
    • Replacement of an Indole Scaffold Targeting Human 15-Lipoxygenase-1 Using Combinatorial Chemistry.

      Prismawan, Deka; van der Vlag, Ramon; Guo, Hao; Dekker, Frank J; Hirsch, Anna K H; HIPS, Helmholtz-Institut für Pharmazeutische Forschung Saarland, Universitätscampus E8.1 66123 Saarbrücken, Germany. (Wiley-Blackwell, 2019-05-01)
      Human 15-lipoxygenase-1 (15-LOX-1) belongs to the class of lipoxygenases, which catalyze oxygenation of polyunsaturated fatty acids, such as arachidonic and linoleic acid. Recent studies have shown that 15-LOX-1 plays an important role in physiological processes linked to several diseases such as airway inflammation disease, coronary artery disease, and several types of cancer such as rectal, colon, breast and prostate cancer. In this study, we aimed to extend the structural diversity of 15-LOX-1 inhibitors, starting from the recently identified indolyl core. In order to find new scaffolds, we employed a combinatorial approach using various aromatic aldehydes and an aliphatic hydrazide tail. This scaffold-hopping study resulted in the identification of the 3-pyridylring as a suitable replacement of the indolyl core with an inhibitory activity in the micromolar range (IC50=16±6 μm) and a rapid and efficient structure-activity relationship investigation.
    • Saccharide-Containing Dynamic Proteoids.

      Liu, Yun; Stuart, Marc C A; Witte, Martin D; Buhler, Eric; Hirsch, Anna K H; Helmholtz-Institute for Pharmaceutical Research Saarland (HIPS), Universitycampus E8.1, 66123 Saarbrücken, Germany. (2017-10-05)
      Dynamic proteoids are dynamic covalent analogues of proteins, which can be used as new adaptive biomaterials. We designed and synthesized a range of sugar-containing dynamic proteoid biodynamers based on the polycondensation of different types of amino acid and dipeptide hydrazides with a biological aliphatic dialdehyde and a nonbiological aromatic dialdehyde. By using the saccharide-based dialdehyde, the biocompatibility of biodynamers should be enhanced compared to previously reported biodynamers.
    • Search for the Active Ingredients from a 2-Aminothiazole DMSO Stock Solution with Antimalarial Activity.

      Ropponen, Henni-Karoliina; Bader, Chantal D; Diamanti, Eleonora; Illarionov, Boris; Rottmann, Matthias; Fischer, Markus; Witschel, Matthias; Müller, Rolf; Hirsch, Anna K H; HIPS, Helmholtz-Institut für Pharmazeutische Forschung Saarland, Universitätscampus E8.1 66123 Saarbrücken, Germany. (Wiley-VCH, 2021-04-12)
      Chemical decomposition of DMSO stock solutions is a common incident that can mislead biological screening campaigns. Here, we share our case study of 2-aminothiazole 1, originating from an antimalarial class that undergoes chemical decomposition in DMSO at room temperature. As previously measured biological activities observed against Plasmodium falciparum NF54 and for the target enzyme PfIspE were not reproducible for a fresh batch, we tackled the challenge to understand where the activity originated from. Solvent- and temperature-dependent studies using HRMS and NMR spectroscopy to monitor the decomposition led to the isolation and in vitro evaluation of several fractions against PfIspE. After four days of decomposition, we successfully isolated the oxygenated and dimerised compounds using SFC purification and correlated the observed activities to them. Due to the unstable nature of the two isolates, it is likely that they undergo further decomposition contributing to the overall instability of the compound.
    • Semi-synthetic vNAR libraries screened against therapeutic antibodies primarily deliver anti-idiotypic binders.

      Könning, Doreen; Rhiel, Laura; Empting, Martin; Grzeschik, Julius; Sellmann, Carolin; Schröter, Christian; Zielonka, Stefan; Dickgießer, Stephan; Pirzer, Thomas; Yanakieva, Desislava; et al. (2017-08-29)
      Anti-idiotypic binders which specifically recognize the variable region of monoclonal antibodies have proven to be robust tools for pharmacokinetic studies of antibody therapeutics and for the development of cancer vaccines. In the present investigation, we focused on the identification of anti-idiotypic, shark-derived IgNAR antibody variable domains (vNARs) targeting the therapeutic antibodies matuzumab and cetuximab for the purpose of developing specific capturing ligands. Using yeast surface display and semi-synthetic, CDR3-randomized libraries, we identified several highly specific binders targeting both therapeutic antibodies in their corresponding variable region, without applying any counter selections during screening. Importantly, anti-idiotypic vNAR binders were not cross-reactive towards cetuximab or matuzumab, respectively, and comprised good target recognition in the presence of human and mouse serum. When coupled to magnetic beads, anti-idiotypic vNAR variants could be used as efficient capturing tools. Moreover, a two-step procedure involving vNAR-functionalized beads was employed for the enrichment of potentially bispecific cetuximab × matuzumab antibody constructs. In conclusion, semi-synthetic and CDR3-randomized vNAR libraries in combination with yeast display enable the fast and facile identification of anti-idiotypic vNAR domains targeting monoclonal antibodies primarily in an anti-idiotypic manner.
    • Serum microRNA-21 as marker for necroinflammation in hepatitis C patients with and without hepatocellular carcinoma.

      Bihrer, Verena; Waidmann, Oliver; Friedrich-Rust, Mireen; Forestier, Nicole; Susser, Simone; Haupenthal, Jörg; Welker, Martin; Shi, Ying; Peveling-Oberhag, Jan; Polta, Andreas; et al. (2011)
      MicroRNA-21 (miR-21) is up-regulated in tumor tissue of patients with malignant diseases, including hepatocellular carcinoma (HCC). Elevated concentrations of miR-21 have also been found in sera or plasma from patients with malignancies, rendering it an interesting candidate as serum/plasma marker for malignancies. Here we correlated serum miR-21 levels with clinical parameters in patients with different stages of chronic hepatitis C virus infection (CHC) and CHC-associated HCC.
    • Serum miR-122 as a biomarker of necroinflammation in patients with chronic hepatitis C virus infection.

      Bihrer, Verena; Friedrich-Rust, Mireen; Kronenberger, Bernd; Forestier, Nicole; Haupenthal, Jörg; Shi, Ying; Peveling-Oberhag, Jan; Radeke, Heinfried H; Sarrazin, Christoph; Herrmann, Eva; et al. (2011-09)
      The liver contains large amounts of microRNA-122 (miR-122), whereas other tissues contain only marginal amounts of this miRNA. MicroRNAs have also been found to circulate in the blood in a cell-free form; their potential as readily accessible disease markers is currently evaluated. Here, we investigated if the serum levels of miR-122 might be useful as disease parameter in patients with chronic hepatitis C virus (HCV) infection.
    • The Shark Strikes Twice: Hypervariable Loop 2 of Shark IgNAR Antibody Variable Domains and Its Potential to Function as an Autonomous Paratope.

      Zielonka, Stefan; Empting, Martin; Könning, Doreen; Grzeschik, Julius; Krah, Simon; Becker, Stefan; Dickgießer, Stephan; Kolmar, Harald; 2Helmholtz-Institute for Pharmaceutical Research Saarland, Saarland University, Campus C2.3, 66123 Saarbrücken, Germany. (2015-08)
      In this present study, we engineered hypervariable loop 2 (HV2) of the IgNAR variable domain in a way that it solely facilitates antigen binding, potentially functioning as an autonomous paratope. For this, the surface-exposed loop corresponding to HV2 was diversified and antigen-specific variable domain of IgNAR antibody (vNAR) molecules were isolated by library screening using yeast surface display (YSD) as platform technology. An epithelial cell adhesion molecule (EpCAM)-specific vNAR was used as starting material, and nine residues in HV2 were randomized. Target-specific clones comprising a new HV2-mediated paratope were isolated against cluster of differentiation 3ε (CD3ε) and human Fcγ while retaining high affinity for EpCAM. Essentially, we demonstrate that a new paratope comprising moderate affinities against a given target molecule can be engineered into the vNAR scaffold that acts independent of the original antigen-binding site, composed of complementarity-determining region 3 (CDR3) and CDR1.
    • Single-domain antibodies for biomedical applications.

      Krah, Simon; Schröter, Christian; Zielonka, Stefan; Empting, Martin; Valldorf, Bernhard; Kolmar, Harald; Helmholtz-Institute for Pharmaceutical Research Saarland (HIPS), Saarland University, Campus C2.3, D-66123 Saarbrücken, Germany. (2016-02)
      Single-domain antibodies are the smallest antigen-binding units of antibodies, consisting either only of one variable domain or one engineered constant domain that solely facilitates target binding. This class of antibody derivatives comprises naturally occurring variable domains derived from camelids and sharks as well as engineered human variable or constant antibody domains of the heavy or light chain. Because of their high affinity and specificity as well as stability, small size and benefit of multiple re-formatting opportunities, those molecules emerged as promising candidates for biomedical applications and some of these entities have already proven to be successful in clinical development.