• Crystal Structures of Fungal Tectonin in Complex with O-Methylated Glycans Suggest Key Role in Innate Immune Defense.

      Sommer, Roman; Makshakova, Olga N; Wohlschlager, Therese; Hutin, Stephanie; Marsh, May; Titz, Alexander; Künzler, Markus; Varrot, Annabelle; HIPS, Helmholtz-Institut für pharmazeutische Forschung Saarland, Universitätscampus 8.1, 66123 Saarbrücken, Germany. (2018-03-06)
      Innate immunity is the first line of defense against pathogens and predators. To initiate a response, it relies on the detection of invaders, where lectin-carbohydrate interactions play a major role. O-Methylated glycans were previously identified as non-self epitopes and conserved targets for defense effector proteins belonging to the tectonin superfamily. Here, we present two crystal structures of Tectonin 2 from the mushroom Laccaria bicolor in complex with methylated ligands, unraveling the molecular basis for this original specificity. Furthermore, they revealed the formation of a ball-shaped tetramer with 24 binding sites distributed at its surface, resembling a small virus capsid. Based on the crystal structures, a methylation recognition motif was identified and found in the sequence of many tectonins from bacteria to human. Our results support a key role of tectonins in innate defense based on a distinctive and conserved type of lectin-glycan interaction.
    • N-Acetylmuramic Acid (MurNAc) Auxotrophy of the Oral PathogenTannerella forsythia: Characterization of a MurNAc Kinase and Analysis of Its Role in Cell Wall Metabolism.

      Hottmann, Isabel; Mayer, Valentina M T; Tomek, Markus B; Friedrich, Valentin; Calvert, Matthew B; Titz, Alexander; Schäffer, Christina; Mayer, Christoph; HIPS, Helmholtz-Institut für pharmazeutische Forschung Saarland, Universitätscampus 8.1, 66123 Saarbrücken, Germany. (2018)
      Tannerella forsythia is an anaerobic, Gram-negative oral pathogen that thrives in multispecies gingival biofilms associated with periodontitis. The bacterium is auxotrophic for the commonly essential bacterial cell wall sugarN-acetylmuramic acid (MurNAc) and, thus, strictly depends on an exogenous supply of MurNAc for growth and maintenance of cell morphology. A MurNAc transporter (Tf_MurT; Tanf_08375) and an ortholog of theEscherichia colietherase MurQ (Tf_MurQ; Tanf_08385) converting MurNAc-6-phosphate to GlcNAc-6-phosphate were recently described forT. forsythia.In between the respective genes on theT. forsythiagenome, a putative kinase gene is located. In this study, the putative kinase (Tf_MurK; Tanf_08380) was produced as a recombinant protein and biochemically characterized. Kinetic studies revealed Tf_MurK to be a 6-kinase with stringent substrate specificity for MurNAc exhibiting a 6 × 104-fold higher catalytic efficiency (kcat/Km) for MurNAc than forN-acetylglucosamine (GlcNAc) withkcatvalues of 10.5 s-1and 0.1 s-1andKmvalues of 200 μM and 116 mM, respectively. The enzyme kinetic data suggest that Tf_MurK is subject to substrate inhibition (Ki[S]= 4.2 mM). To assess the role of Tf_MurK in the cell wall metabolism ofT. forsythia, a kinase deletion mutant (ΔTf_murK::erm) was constructed. This mutant accumulated MurNAc intracellularly in the exponential phase, indicating the capability to take up MurNAc, but inability to catabolize MurNAc. In the stationary phase, the MurNAc level was reduced in the mutant, while the level of the peptidoglycan precursor UDP-MurNAc-pentapeptide was highly elevated. Further, according to scanning electron microscopy evidence, theΔTf_murK::ermmutant was more tolerant toward low MurNAc concentration in the medium (below 0.5 μg/ml) before transition from healthy, rod-shaped to fusiform cells occurred, while the parent strain required > 1 μg/ml MurNAc for optimal growth. These data reveal thatT. forsythiareadily catabolizes exogenous MurNAc but simultaneously channels a proportion of the sugar into peptidoglycan biosynthesis. Deletion ofTf_murKblocks MurNAc catabolism and allows the direction of MurNAc solely to peptidoglycan biosynthesis, resulting in a growth advantage in MurNAc-depleted medium. This work increases our understanding of theT. forsythiacell wall metabolism and may pave new routes for lead finding in the treatment of periodontitis.