• Directing Drugs to Bugs: Antibiotic-Carbohydrate Conjugates Targeting Biofilm-Associated Lectins of Pseudomonas aeruginosa .

      Meiers, Joscha; Zahorska, Eva; Röhrig, Teresa; Hauck, Dirk; Wagner, Stefanie; Titz, Alexander; HIPS, Helmholtz-Institut für Pharmazeutische Forschung Saarland, Universitätscampus E8.1 66123 Saarbrücken, Germany. (ACS, 2020-10-02)
      Chronic infections by Pseudomonas aeruginosa are characterized by biofilm formation, which effectively enhances resistance toward antibiotics. Biofilm-specific antibiotic delivery could locally increase drug concentration to break antimicrobial resistance and reduce the drug's peripheral side effects. Two extracellular P. aeruginosa lectins, LecA and LecB, are essential structural components for biofilm formation and thus render a possible anchor for biofilm-targeted drug delivery. The standard-of-care drug ciprofloxacin suffers from severe systemic side effects and was therefore chosen for this approach. We synthesized several ciprofloxacin-carbohydrate conjugates and established a structure-activity relationship. Conjugation of ciprofloxacin to lectin probes enabled biofilm accumulation in vitro, reduced the antibiotic's cytotoxicity, but also reduced its antibiotic activity against planktonic cells due to a reduced cell permeability and on target activity. This work defines the starting point for new biofilm/lectin-targeted drugs to modulate antibiotic properties and ultimately break antimicrobial resistance.
    • Lectin antagonists in infection, immunity, and inflammation.

      Meiers, Joscha; Siebs, Eike; Zahorska, Eva; Titz, Alexander; HIPS, Helmholtz-Institut für Pharmazeutische Forschung Saarland, Universitätscampus E8.1 66123 Saarbrücken, Germany. (Elsevier, 2019-08-27)
      Lectins are proteins found in all domains of life with a plethora of biological functions, especially in the infection process, immune response, and inflammation. Targeting these carbohydrate-binding proteins is challenged by the fact that usually low affinity interactions between lectin and glycoconjugate are observed. Nature often circumvents this process through multivalent display of ligand and lectin. Consequently, the vast majority of synthetic antagonists are multivalently displayed native carbohydrates. At the cost of disadvantageous pharmacokinetic properties and possibly a reduced selectivity for the target lectin, the molecules usually possess very high affinities to the respective lectin through ligand epitope avidity. Recent developments include the advent of glycomimetic or allosteric small molecule inhibitors for this important protein class and their use in chemical biology and drug research. This evolution has culminated in the transition of the small molecule GMI-1070 into clinical phase III. In this opinion article, an overview of the most important developments of lectin antagonists in the last two decades with a focus on the last five years is given