• Cellular automaton models for time-correlated random walks: derivation and analysis.

      Nava-Sedeño, J M; Hatzikirou, H; Klages, R; Deutsch, A; BRICS, Braunschweiger Zentrum für Systembiologie, Rebenring 56, 38106 Braunschweig, Germany. (2017-12-05)
      Many diffusion processes in nature and society were found to be anomalous, in the sense of being fundamentally different from conventional Brownian motion. An important example is the migration of biological cells, which exhibits non-trivial temporal decay of velocity autocorrelation functions. This means that the corresponding dynamics is characterized by memory effects that slowly decay in time. Motivated by this we construct non-Markovian lattice-gas cellular automata models for moving agents with memory. For this purpose the reorientation probabilities are derived from velocity autocorrelation functions that are given a priori; in that respect our approach is "data-driven". Particular examples we consider are velocity correlations that decay exponentially or as power laws, where the latter functions generate anomalous diffusion. The computational efficiency of cellular automata combined with our analytical results paves the way to explore the relevance of memory and anomalous diffusion for the dynamics of interacting cell populations, like confluent cell monolayers and cell clustering.
    • Commentary: "Can Selective MHC Downregulation Explain the Specificity and Genetic Diversity of NK Cell Receptors?".

      Robert, Philippe A; Helmholtz Centre for infection research, Inhoffenstr. 7, D-38124 Braunschweig, Germany. (2015)
    • Computational Study to Determine When to Initiate and Alternate Therapy in HIV Infection.

      Haering, Matthias; Hördt, Andreas; Müller, A; Hernandez-Vargas, Esteban Abelardo (2014)
      HIV is a widespread viral infection without cure. Drug treatment has transformed HIV disease into a treatable long-term infection. However, the appearance of mutations within the viral genome reduces the susceptibility of HIV to drugs. Therefore, a key goal is to extend the time until patients exhibit resistance to all existing drugs. Current HIV treatment guidelines seem poorly supported as practitioners have not achieved a consensus on the optimal time to initiate and to switch antiretroviral treatments. We contribute to this discussion with predictions derived from a mathematical model of HIV dynamics. Our results indicate that early therapy initiation (within 2 years postinfection) is critical to delay AIDS progression. For patients who have not received any therapy during the first 3 years postinfection, switch in response to virological failure may outperform proactive switching strategies. In case that proactive switching is opted, the switching time between therapies should not be larger than 100 days. Further clinical trials are needed to either confirm or falsify these predictions.
    • Computer Simulation of Multi-Color Brainbow Staining and Clonal Evolution of B Cells in Germinal Centers.

      Meyer-Hermann, Michael; Binder, Sebastian C; Mesin, Luka; Victora, Gabriel D; BRICS, Braunschweiger Zentrum für Systembiologie, Rebenring 56,38106 Braunschweig, Germany. (2018-01-01)
      Clonal evolution of B cells in germinal centers (GCs) is central to affinity maturation of antibodies in response to pathogens. Permanent or tamoxifen-induced multi-color recombination of B cells based on the brainbow allele allows monitoring the degree of color dominance in the course of the GC reaction. Here, we use computer simulations of GC reactions in order to replicate the evolution of color dominance
    • [The contribution of epidemiological models to the description of the outbreak of the COVID-19 pandemic].

      Priesemann, Viola; Meyer-Hermann, Michael; Pigeot, Iris; Schöbel, Anita; HZI,Helmholtz-Zentrum für Infektionsforschung GmbH, Inhoffenstr. 7,38124 Braunschweig, Germany. (Springer, 2021-07-30)
      After the global outbreak of the COVID-19 pandemic, an infection dynamic of immense extent developed. Since then, numerous measures have been taken to bring the infection under control. This was very successful in the spring of 2020, while the number of infections rose sharply the following autumn. To predict the occurrence of infections, epidemiological models are used. These are in principle a very valuable tool in pandemic management. However, they still partly need to be based on assumptions regarding the transmission routes and possible drivers of the infection dynamics. Despite numerous individual approaches, systematic epidemiological data are still lacking with which, for example, the effectiveness of individual measures could be quantified. Such information generated in studies is needed to enable reliable predictions regarding the further course of the pandemic. Thereby, the complexity of the models could develop hand in hand with the complexity of the available data. In this article, after delineating two basic classes of models, the contribution of epidemiological models to the assessment of various central aspects of the pandemic, such as the reproduction rate, the number of unreported cases, infection fatality rate, and the consideration of regionality, is shown. Subsequently, the use of the models to quantify the impact of measures and the effects of the "test-trace-isolate" strategy is described. In the concluding discussion, the limitations of such modelling approaches are juxtaposed with their advantages.
    • Cyclin D3 drives inertial cell cycling in dark zone germinal center B cells.

      Pae, Juhee; Ersching, Jonatan; Castro, Tiago B R; Schips, Marta; Mesin, Luka; Allon, Samuel J; Ordovas-Montanes, Jose; Mlynarczyk, Coraline; Melnick, Ari; Efeyan, Alejo; et al. (Rockefeller University Press, 2021-04-01)
      During affinity maturation, germinal center (GC) B cells alternate between proliferation and somatic hypermutation in the dark zone (DZ) and affinity-dependent selection in the light zone (LZ). This anatomical segregation imposes that the vigorous proliferation that allows clonal expansion of positively selected GC B cells takes place ostensibly in the absence of the signals that triggered selection in the LZ, as if by "inertia." We find that such inertial cycles specifically require the cell cycle regulator cyclin D3. Cyclin D3 dose-dependently controls the extent to which B cells proliferate in the DZ and is essential for effective clonal expansion of GC B cells in response to strong T follicular helper (Tfh) cell help. Introduction into the Ccnd3 gene of a Burkitt lymphoma-associated gain-of-function mutation (T283A) leads to larger GCs with increased DZ proliferation and, in older mice, clonal B cell lymphoproliferation, suggesting that the DZ inertial cell cycle program can be coopted by B cells undergoing malignant transformation.
    • Das gemeinsame Interesse von Gesundheit und Wirtschaft: Eine Szenarienrechnung zur Eindämmung der Corona Pandemie

      Dorn, Florian; et al.; BRICS, Braunschweiger Zentrum für Systembiologie, Rebenring 56,38106 Braunschweig, Germany.; HZI,Helmholtz-Zentrum für Infektionsforschung GmbH, Inhoffenstr. 7,38124 Braunschweig, Germany. (ifo Institut, 2020-05-12)
      [No Abstract available]
    • Deceleration of fusion-fission cycles improves mitochondrial quality control during aging.

      Figge, Marc Thilo; Reichert, Andreas S; Meyer-Hermann, Michael; Osiewacz, Heinz D; Applied Systems Biology, Leibniz-Institute for Natural Product Research and Infection Biology, Hans-Knöll-Institute and Friedrich Schiller University, Jena, Germany. (2012-06)
      Mitochondrial dynamics and mitophagy play a key role in ensuring mitochondrial quality control. Impairment thereof was proposed to be causative to neurodegenerative diseases, diabetes, and cancer. Accumulation of mitochondrial dysfunction was further linked to aging. Here we applied a probabilistic modeling approach integrating our current knowledge on mitochondrial biology allowing us to simulate mitochondrial function and quality control during aging in silico. We demonstrate that cycles of fusion and fission and mitophagy indeed are essential for ensuring a high average quality of mitochondria, even under conditions in which random molecular damage is present. Prompted by earlier observations that mitochondrial fission itself can cause a partial drop in mitochondrial membrane potential, we tested the consequences of mitochondrial dynamics being harmful on its own. Next to directly impairing mitochondrial function, pre-existing molecular damage may be propagated and enhanced across the mitochondrial population by content mixing. In this situation, such an infection-like phenomenon impairs mitochondrial quality control progressively. However, when imposing an age-dependent deceleration of cycles of fusion and fission, we observe a delay in the loss of average quality of mitochondria. This provides a rational why fusion and fission rates are reduced during aging and why loss of a mitochondrial fission factor can extend life span in fungi. We propose the 'mitochondrial infectious damage adaptation' (MIDA) model according to which a deceleration of fusion-fission cycles reflects a systemic adaptation increasing life span.
    • Development of the reproduction number from coronavirus SARS-CoV-2 case data in Germany and implications for political measures.

      Khailaie, Sahamoddin; Mitra, Tanmay; Bandyopadhyay, Arnab; Schips, Marta; Mascheroni, Pietro; Vanella, Patrizio; Lange, Berit; Binder, Sebastian C; Meyer-Hermann, Michael; BRICS, Braunschweiger Zentrum für Systembiologie, Rebenring 56,38106 Braunschweig, Germany.; HZI,Helmholtz-Zentrum für Infektionsforschung GmbH, Inhoffenstr. 7,38124 Braunschweig, Germany. (BioMedCentral, 2021-01-28)
      Background: SARS-CoV-2 has induced a worldwide pandemic and subsequent non-pharmaceutical interventions (NPIs) to control the spread of the virus. As in many countries, the SARS-CoV-2 pandemic in Germany has led to a consecutive roll-out of different NPIs. As these NPIs have (largely unknown) adverse effects, targeting them precisely and monitoring their effectiveness are essential. We developed a compartmental infection dynamics model with specific features of SARS-CoV-2 that allows daily estimation of a time-varying reproduction number and published this information openly since the beginning of April 2020. Here, we present the transmission dynamics in Germany over time to understand the effect of NPIs and allow adaptive forecasts of the epidemic progression. Methods: We used a data-driven estimation of the evolution of the reproduction number for viral spreading in Germany as well as in all its federal states using our model. Using parameter estimates from literature and, alternatively, with parameters derived from a fit to the initial phase of COVID-19 spread in different regions of Italy, the model was optimized to fit data from the Robert Koch Institute. Results: The time-varying reproduction number (Rt) in Germany decreased to <1 in early April 2020, 2-3 weeks after the implementation of NPIs. Partial release of NPIs both nationally and on federal state level correlated with moderate increases in Rt until August 2020. Implications of state-specific Rt on other states and on national level are characterized. Retrospective evaluation of the model shows excellent agreement with the data and usage of inpatient facilities well within the healthcare limit. While short-term predictions may work for a few weeks, long-term projections are complicated by unpredictable structural changes. Conclusions: The estimated fraction of immunized population by August 2020 warns of a renewed outbreak upon release of measures. A low detection rate prolongs the delay reaching a low case incidence number upon release, showing the importance of an effective testing-quarantine strategy. We show that real-time monitoring of transmission dynamics is important to evaluate the extent of the outbreak, short-term projections for the burden on the healthcare system, and their response to policy changes.
    • Discrete-time neural observer for HIV infection dynamic

      Hernandez-Vargas, Esteban A.; Alanis, Alma Y.; Sanchez, Edgar N.; Systems Immunology, Helmholtz-Zentrum für Infecktionsforschung, Inhoffenstraße 7, D-38124, Braunschweig, Germany (Institute of Electrical and Electronics Engineers, 2013-04-19)
    • The distinctive germinal center phase of IgE+ B lymphocytes limits their contribution to the classical memory response.

      He, Jin-Shu; Meyer-Hermann, Michael; Xiangying, Deng; Zuan, Lim Yok; Jones, Leigh Ann; Ramakrishna, Lakshmi; de Vries, Victor C; Dolpady, Jayashree; Aina, Hoi; Joseph, Sabrina; et al. (2013-11-18)
      The mechanisms involved in the maintenance of memory IgE responses are poorly understood, and the role played by germinal center (GC) IgE(+) cells in memory responses is particularly unclear. IgE(+) B cell differentiation is characterized by a transient GC phase, a bias toward the plasma cell (PC) fate, and dependence on sequential switching for the production of high-affinity IgE. We show here that IgE(+) GC B cells are unfit to undergo the conventional GC differentiation program due to impaired B cell receptor function and increased apoptosis. IgE(+) GC cells fail to populate the GC light zone and are unable to contribute to the memory and long-lived PC compartments. Furthermore, we demonstrate that direct and sequential switching are linked to distinct B cell differentiation fates: direct switching generates IgE(+) GC cells, whereas sequential switching gives rise to IgE(+) PCs. We propose a comprehensive model for the generation and memory of IgE responses.
    • Diversity of coupled oscillators can enhance their synchronization.

      Montaseri, Ghazal; Meyer-Hermann, Michael; BRICS, Braunschweiger Zentrum für Systembiologie, Rebenring 56, 38106 Braunschweig, Germany. (2016-10)
      The heterogeneity of coupled oscillators is important for the degree of their synchronization. According to the classical Kuramoto model, larger heterogeneity reduces synchronization. Here, we show that in a model for coupled pancreatic β-cells, higher diversity of the cells induces higher synchrony. We find that any system of coupled oscillators that oscillates on two time scales and in which heterogeneity causes a transition from chaotic to damped oscillations on the fast time scale exhibits this property. Thus, synchronization of a subset of oscillating systems can be enhanced by increasing the heterogeneity of the system constituents.
    • A dynamic CD2-rich compartment at the outer edge of the immunological synapse boosts and integrates signals.

      Demetriou, Philippos; Abu-Shah, Enas; Valvo, Salvatore; McCuaig, Sarah; Mayya, Viveka; Kvalvaag, Audun; Starkey, Thomas; Korobchevskaya, Kseniya; Lee, Lennard Y W; Friedrich, Matthias; et al. (2020-09-14)
      The CD2-CD58 recognition system promotes adhesion and signaling and counters exhaustion in human T cells. We found that CD2 localized to the outer edge of the mature immunological synapse, with cellular or artificial APC, in a pattern we refer to as a 'CD2 corolla'. The corolla captured engaged CD28, ICOS, CD226 and SLAM-F1 co-stimulators. The corolla amplified active phosphorylated Src-family kinases (pSFK), LAT and PLC-γ over T cell receptor (TCR) alone. CD2-CD58 interactions in the corolla boosted signaling by 77% as compared with central CD2-CD58 interactions. Engaged PD-1 invaded the CD2 corolla and buffered CD2-mediated amplification of TCR signaling. CD2 numbers and motifs in its cytoplasmic tail controlled corolla formation. CD8+ tumor-infiltrating lymphocytes displayed low expression of CD2 in the majority of people with colorectal, endometrial or ovarian cancer. CD2 downregulation may attenuate antitumor T cell responses, with implications for checkpoint immunotherapies.
    • Ebola virus infection modeling and identifiability problems.

      Nguyen, Van Kinh; Binder, Sebastian C; Boianelli, Alessandro; Müller, A; Hernandez-Vargas, Esteban Abelardo; Helmholtz Center for Infection Research (2015)
      The recent outbreaks of Ebola virus (EBOV) infections have underlined the impact of the virus as a major threat for human health. Due to the high biosafety classification of EBOV (level 4), basic research is very limited. Therefore, the development of new avenues of thinking to advance quantitative comprehension of the virus and its interaction with the host cells is urgently needed to tackle this lethal disease. Mathematical modeling of the EBOV dynamics can be instrumental to interpret Ebola infection kinetics on quantitative grounds. To the best of our knowledge, a mathematical modeling approach to unravel the interaction between EBOV and the host cells is still missing. In this paper, a mathematical model based on differential equations is used to represent the basic interactions between EBOV and wild-type Vero cells in vitro. Parameter sets that represent infectivity of pathogens are estimated for EBOV infection and compared with influenza virus infection kinetics. The average infecting time of wild-type Vero cells by EBOV is slower than in influenza infection. Simulation results suggest that the slow infecting time of EBOV could be compensated by its efficient replication. This study reveals several identifiability problems and what kind of experiments are necessary to advance the quantification of EBOV infection. A first mathematical approach of EBOV dynamics and the estimation of standard parameters in viral infections kinetics is the key contribution of this work, paving the way for future modeling works on EBOV infection.
    • An Egyptian HPAI H5N1 isolate from clade 2.2.1.2 is highly pathogenic in an experimentally infected domestic duck breed (Sudani duck).

      Samir, M; Hamed, M; Abdallah, F; Kinh Nguyen, V; Hernandez-Vargas, E A; Seehusen, F; Baumgärtner, W; Hussein, A; Ali, A A H; Pessler,, F; et al. (2018-01-24)
      The highly pathogenic avian influenza (HPAI) H5N1 viruses continue to cause major problems in poultry and can, although rarely, cause human infection. Being enzootic in domestic poultry, Egyptian isolates are continuously evolving, and novel clades vary in their pathogenicity in avian hosts. Considering the importance of domestic ducks as natural hosts of HPAI H5N1 viruses and their likelihood of physical contact with other avian hosts and humans, it is of utmost importance to characterize the pathogenicity of newly emerged HPAI strains in the domestic duck. The most recently identified Egyptian clade 2.2.1.2 HPAI H5N1 viruses have been isolated from naturally infected pigeons, turkeys and humans. However, essentially nothing is known about their pathogenicity in domestic ducks. We therefore characterized the pathogenicity of an Egyptian HPAI H5N1 isolate A/chicken/Faquos/amn12/2011 (clade 2.2.1.2) in Sudani duck, a domestic duck breed commonly reared in Egypt. While viral transcription (HA mRNA) was highest in lung, heart and kidney peaking between 40 and 48 hpi, lower levels were detected in brain. Weight loss of infected ducks started at 16 hpi and persisted until 120 hpi. The first severe clinical signs were noted by 32 hpi and peaked in severity at 72 and 96 hpi. Haematological analyses showed a decline in total leucocytes, granulocytes, platelets and granulocyte/lymphocyte ratio, but lymphocytosis. Upon necropsy, lesions were obvious in heart, liver, spleen and pancreas and consisted mainly of necrosis and petechial haemorrhage. Histologically, lungs were the most severely affected organs, whereas brain only showed mild neuronal degeneration and gliosis at 48 hpi despite obvious neurological clinical signs. Taken together, our results provide first evidence that this HPAI H5N1 isolate (clade 2.2.1.2) is highly pathogenic to Sudani ducks and highlight the importance of this breed as potential reservoir and disseminator of HPAI strains from this clade.
    • Entropy-driven cell decision-making predicts ‘fluid-to-solid’ transition in multicellular systems

      Barua, Arnab; Syga, Simon; Mascheroni, Pietro; Kavallaris, Nikos; Meyer-Hermann, Michael; Deutsch, Andreas; Hatzikirou, Haralampos; BRICS, Braunschweiger Zentrum für Systembiologie, Rebenring 56,38106 Braunschweig, Germany. (Institute of Physics, 2020-12-01)
      Cellular decision making allows cells to assume functionally different phenotypes in response to microenvironmental cues, with or without genetic change. It is an open question, how individual cell decisions influence the dynamics at the tissue level. Here, we study spatio-temporal pattern formation in a population of cells exhibiting phenotypic plasticity, which is a paradigm of cell decision making. We focus on the migration/resting and the migration/proliferation plasticity which underly the epithelial-mesenchymal transition and the go or grow dichotomy. We assume that cells change their phenotype in order to minimize their microenvironmental entropy following the LEUP (Least microEnvironmental Uncertainty Principle) hypothesis. In turn, we study the impact of the LEUP-driven migration/resting and migration/proliferation plasticity on the corresponding multicellular spatio-temporal dynamics with a stochastic cell-based mathematical model for the spatio-temporal dynamics of the cell phenotypes. In the case of the go or rest plasticity, a corresponding mean-field approximation allows to identify a bistable switching mechanism between a diffusive (fluid) and an epithelial (solid) tissue phase which depends on the sensitivity of the phenotypes to the environment. For the go or grow plasticity, we show the possibility of Turing pattern formation for the ‘solid’ tissue phase and its relation with the parameters of the LEUP-driven cell decisions.
    • Estimation of the cancer risk induced by therapies targeting stem cell replication and treatment recommendations.

      Meyer-Hermann, Michael; BRICS, Braunschweiger Zentrum für Systembiologie, Rebenring 56, 38106 Braunschweig, Germany. (2018-08-06)
      Rejuvenation of stem cell activity might increase life expectancy by prolonging functionality of organs. Higher stem cell replication rates also bear the risk of cancer. The extent of this risk is not known. While it is difficult to evaluate this cancer risk in experiments, it can be estimated using a mathematical model for tissue homeostasis by stem cell replication and associated cancer risk. The model recapitulates the observation that treatments targeting stem cell replication can induce a substantial delay of organ failure. The model predicts that the cancer risk is minor under particular conditions. It depends on the assumed implications for cell damage repair during treatment. The benefit of rejuvenation therapy and its impact on cancer risk depend on the biological age at the time of treatment and on the overall cell turnover rate of the organs. Different organs have to be considered separately in the planning of systemic treatments. In recent years, the transfer of blood from young to old individuals was shown to bear the potential of rejuvenation of stem cell activity. In this context, the model predicts that the treatment schedule is critical for success and that schedules successful in animal experiments are not transferable to humans. Guidelines for successful protocols are proposed. The model presented here may be used as a guidance for the development of stem cell rejuvenation treatment protocols and the identification of critical parameters for cancer risk.
    • Evaluation of CD8 T cell killing models with computer simulations of 2-photon imaging experiments.

      Rastogi, Ananya; Robert, Philippe A; Halle, Stephan; Meyer-Hermann, Michael; BRICS, Braunschweiger Zentrum für Systembiologie, Rebenring 56,38106 Braunschweig, Germany. (PLOS, 2020-12-28)
      In vivo imaging of cytotoxic T lymphocyte (CTL) killing activity revealed that infected cells have a higher observed probability of dying after multiple contacts with CTLs. We developed a three-dimensional agent-based model to discriminate different hypotheses about how infected cells get killed based on quantitative 2-photon in vivo observations. We compared a constant CTL killing probability with mechanisms of signal integration in CTL or infected cells. The most likely scenario implied increased susceptibility of infected cells with increasing number of CTL contacts where the total number of contacts was a critical factor. However, when allowing in silico T cells to initiate new interactions with apoptotic target cells (zombie contacts), a contact history independent killing mechanism was also in agreement with experimental datasets. The comparison of observed datasets to simulation results, revealed limitations in interpreting 2-photon data, and provided readouts to distinguish CTL killing models.
    • Exploiting the Synergy between Carboplatin and ABT-737 in the Treatment of Ovarian Carcinomas.

      Jain, Harsh Vardhan; Richardson, Alan; Müller, A; Byrne, Helen M (2014)
      Platinum drug-resistance in ovarian cancers mediated by anti-apoptotic proteins such as Bcl-xL is a major factor contributing to the chemotherapeutic resistance of recurrent disease. Consequently, concurrent inhibition of Bcl-xL in combination with chemotherapy may improve treatment outcomes for patients. Here, we develop a mathematical model to investigate the potential of combination therapy with ABT-737, a small molecule inhibitor of Bcl-xL, and carboplatin, a platinum-based drug, on a simulated tumor xenograft. The model is calibrated against in vivo experimental data, wherein xenografts established in mice were treated with ABT-737 and/or carboplatin on a fixed periodic schedule. The validated model is used to predict the minimum drug load that will achieve a predetermined level of tumor growth inhibition, thereby maximizing the synergy between the two drugs. Our simulations suggest that the infusion-duration of each carboplatin dose is a critical parameter, with an 8-hour infusion of carboplatin given weekly combined with a daily bolus dose of ABT-737 predicted to minimize residual disease. The potential of combination therapy to prevent or delay the onset of carboplatin-resistance is also investigated. When resistance is acquired as a result of aberrant DNA-damage repair in cells treated with carboplatin, drug delivery schedules that induce tumor remission with even low doses of combination therapy can be identified. Intrinsic resistance due to pre-existing cohorts of resistant cells precludes tumor regression, but dosing strategies that extend disease-free survival periods can still be identified. These results highlight the potential of our model to accelerate the development of novel therapeutics such as BH3 mimetics.
    • F-Actin-Driven CD28-CD80 Localization in the Immune Synapse.

      Siokis, Anastasios; Robert, Philippe A; Demetriou, Philippos; Dustin, Michael L; Meyer-Hermann, Michael; BRICS, Braunschweiger Zentrum für Systembiologie, Rebenring 56,38106 Braunschweig, Germany. (Elsevier, 2018-07-31)
      During immunological synapse (IS) formation, T cell receptor (TCR) signaling complexes, integrins, and costimulatory molecules exhibit a particular spatial localization. Here, we develop an agent-based model for the IS formation based on TCR peptide-bound major histocompatibility complex (pMHC) and leukocyte-function-associated antigen 1 (LFA-1) intracellular activation molecule 1 (ICAM-1) dynamics, including CD28 binding to a costimulatory ligand, coupling of molecules to the centripetal actin flow, and size-based segregation (SBS). A radial gradient of LFA-1 in the peripheral supramolecular activation cluster (pSMAC) toward the central supramolecular activation cluster (cSMAC) emerged as a combined consequence of actin binding and diffusion and modified the positioning of other molecules. The simulations predict a mechanism of CD28 movement, according to which CD28-CD80 complexes passively follow TCR-pMHC microclusters. However, the characteristic CD28-CD80 localization in a ring pattern around the cSMAC only emerges with a particular CD28-actin coupling strength that induces a centripetal motion. These results have implications for the understanding of T cell activation and fate decisions.