• In Vivo Killing Capacity of Cytotoxic T Cells Is Limited and Involves Dynamic Interactions and T Cell Cooperativity.

      Halle, Stephan; Keyser, Kirsten Anja; Stahl, Felix Rolf; Busche, Andreas; Marquardt, Anja; Zheng, Xiang; Galla, Melanie; Heissmeyer, Vigo; Heller, Katrin; Boelter, Jasmin; et al. (2016-02-16)
      According to in vitro assays, T cells are thought to kill rapidly and efficiently, but the efficacy and dynamics of cytotoxic T lymphocyte (CTL)-mediated killing of virus-infected cells in vivo remains elusive. We used two-photon microscopy to quantify CTL-mediated killing in mice infected with herpesviruses or poxviruses. On average, one CTL killed 2-16 virus-infected cells per day as determined by real-time imaging and by mathematical modeling. In contrast, upon virus-induced MHC class I downmodulation, CTLs failed to destroy their targets. During killing, CTLs remained migratory and formed motile kinapses rather than static synapses with targets. Viruses encoding the calcium sensor GCaMP6s revealed strong heterogeneity in individual CTL functional capacity. Furthermore, the probability of death of infected cells increased for those contacted by more than two CTLs, indicative of CTL cooperation. Thus, direct visualization of CTLs during killing of virus-infected cells reveals crucial parameters of CD8(+) T cell immunity.
    • The molecular basis of synergism between carboplatin and ABT-737 therapy targeting ovarian carcinomas.

      Jain, Harsh Vardhan; Müller, A (2011-02-01)
      Resistance to standard chemotherapy (carboplatin + paclitaxel) is one of the leading causes of therapeutic failure in ovarian carcinomas. Emergence of chemoresistance has been shown to be mediated in part by members of the Bcl family of proteins including the antiapoptotic protein Bcl-x(L), whose expression is correlated with shorter disease-free intervals in recurrent disease. ABT-737 is an example of one of the first small-molecule inhibitors of Bcl-2/Bcl-x(L) that has been shown to increase the sensitivity of ovarian cancer cells to carboplatin. To exploit the therapeutic potential of these two drugs and predict optimal doses and dose scheduling, it is essential to understand the molecular basis of their synergistic action. Here, we build and calibrate a mathematical model of ABT-737 and carboplatin action on an ovarian cancer cell line (IGROV-1). The model suggests that carboplatin treatment primes cells for ABT-737 therapy because of an increased dependence of cells with DNA damage on Bcl-x(L) for survival. Numerical simulations predict the existence of a threshold of Bcl-x(L) below which these cells are unable to recover. Furthermore, co- plus posttreatment of ABT-737 with carboplatin is predicted to be the best strategy to maximize synergism between these two drugs. A critical challenge in chemotherapy is to strike a balance between maximizing cell-kill while minimizing patient drug load. We show that the model can be used to compute minimal doses required for any desired fraction of cell kill. These results underscore the potential of the modeling work presented here as a valuable quantitative tool to aid in the translation of novel drugs such as ABT-737 from the experimental to clinical setting and highlight the need for close collaboration between modelers and experimental scientists.
    • Progressive contraction of the latent HIV reservoir around a core of less-differentiated CD4⁺ memory T Cells.

      Jaafoura, S; de Goër de Herve, M G; Hernandez-Vargas, Esteban Abelardo; Hendel-Chavez, H; Abdoh, M; Mateo, M C; Krzysiek, R; Merad, M; Seng, R; Tardieu, M; et al. (2014)
      In patients who are receiving prolonged antiretroviral treatment (ART), HIV can persist within a small pool of long-lived resting memory CD4(+) T cells infected with integrated latent virus. This latent reservoir involves distinct memory subsets. Here we provide results that suggest a progressive reduction of the size of the blood latent reservoir around a core of less-differentiated memory subsets (central memory and stem cell-like memory (TSCM) CD4(+) T cells). This process appears to be driven by the differences in initial sizes and decay rates between latently infected memory subsets. Our results also suggest an extreme stability of the TSCM sub-reservoir, the size of which is directly related to cumulative plasma virus exposure before the onset of ART, stressing the importance of early initiation of effective ART. The presence of these intrinsic dynamics within the latent reservoir may have implications for the design of optimal HIV therapeutic purging strategies.
    • Therapeutic Potential of Bacteria against Solid Tumors.

      Hatzikirou, Haralampos; López Alfonso, Juan Carlos; Leschner, Sara; Weiss, Siegfried; Meyer-Hermann, Michael; BRICS, Braunschweiger Zentrum für Systembiologie, Rebenring 56, 38106 Braunschweig, Germany. (2017-04-01)
      Intentional bacterial infections can produce efficacious antitumor responses in mice, rats, dogs, and humans. However, low overall success rates and intense side effects prevent such approaches from being employed clinically. In this work, we titered bacteria and/or the proinflammatory cytokine TNFα in a set of established murine models of cancer. To interpret the experiments conducted, we considered and calibrated a tumor-effector cell recruitment model under the influence of functional tumor-associated vasculature. In this model, bacterial infections and TNFα enhanced immune activity and altered vascularization in the tumor bed. Information to predict bacterial therapy outcomes was provided by pretreatment tumor size and the underlying immune recruitment dynamics. Notably, increasing bacterial loads did not necessarily produce better long-term tumor control, suggesting that tumor sizes affected optimal bacterial loads. Short-term treatment responses were favored by high concentrations of effector cells postinjection, such as induced by higher bacterial loads, but in the longer term did not correlate with an effective restoration of immune surveillance. Overall, our findings suggested that a combination of intermediate bacterial loads with low levels TNFα administration could enable more favorable outcomes elicited by bacterial infections in tumor-bearing subjects. Cancer Res; 77(7); 1553-63. ©2017 AACR.
    • Visualizing antibody affinity maturation in germinal centers.

      Tas, Jeroen M J; Mesin, Luka; Pasqual, Giulia; Targ, Sasha; Jacobsen, Johanne T; Mano, Yasuko M; Chen, Casie S; Weill, Jean-Claude; Reynaud, Claude-Agnès; Browne, Edward P; et al. (2016-03-04)
      Antibodies somatically mutate to attain high affinity in germinal centers (GCs). There, competition between B cell clones and among somatic mutants of each clone drives an increase in average affinity across the population. The extent to which higher-affinity cells eliminating competitors restricts clonal diversity is unknown. By combining multiphoton microscopy and sequencing, we show that tens to hundreds of distinct B cell clones seed each GC and that GCs lose clonal diversity at widely disparate rates. Furthermore, efficient affinity maturation can occur in the absence of homogenizing selection, ensuring that many clones can mature in parallel within the same GC. Our findings have implications for development of vaccines in which antibodies with nonimmunodominant specificities must be elicited, as is the case for HIV-1 and influenza.