• Why one-size-fits-all vaso-modulatory interventions fail to control glioma invasion: in silico insights.

      Alfonso, J C L; Köhn-Luque, A; Stylianopoulos, T; Feuerhake, F; Deutsch, A; Hatzikirou, H; Braunschweiger zentrum für Systembiologie, Rebenring 56,38106 Braunschweig, Germany. (2016-11-23)
      Gliomas are highly invasive brain tumours characterised by poor prognosis and limited response to therapy. There is an ongoing debate on the therapeutic potential of vaso-modulatory interventions against glioma invasion. Prominent vasculature-targeting therapies involve tumour blood vessel deterioration and normalisation. The former aims at tumour infarction and nutrient deprivation induced by blood vessel occlusion/collapse. In contrast, the therapeutic intention of normalising the abnormal tumour vasculature is to improve the efficacy of conventional treatment modalities. Although these strategies have shown therapeutic potential, it remains unclear why they both often fail to control glioma growth. To shed some light on this issue, we propose a mathematical model based on the migration/proliferation dichotomy of glioma cells in order to investigate why vaso-modulatory interventions have shown limited success in terms of tumour clearance. We found the existence of a critical cell proliferation/diffusion ratio that separates glioma responses to vaso-modulatory interventions into two distinct regimes. While for tumours, belonging to one regime, vascular modulations reduce the front speed and increase the infiltration width, for those in the other regime, the invasion speed increases and infiltration width decreases. We discuss how these in silico findings can be used to guide individualised vaso-modulatory approaches to improve treatment success rates.
    • In-silico insights on the prognostic potential of immune cell infiltration patterns in the breast lobular epithelium.

      Alfonso, J C L; Schaadt, N S; Schönmeyer, R; Brieu, N; Forestier, G; Wemmert, C; Feuerhake, F; Hatzikirou, H; BRICS, Braunschweiger Zentrum für Systembiologie, Rebenring 56, 38106 Braunschweig, Germany. (2016-10-12)
      Scattered inflammatory cells are commonly observed in mammary gland tissue, most likely in response to normal cell turnover by proliferation and apoptosis, or as part of immunosurveillance. In contrast, lymphocytic lobulitis (LLO) is a recurrent inflammation pattern, characterized by lymphoid cells infiltrating lobular structures, that has been associated with increased familial breast cancer risk and immune responses to clinically manifest cancer. The mechanisms and pathogenic implications related to the inflammatory microenvironment in breast tissue are still poorly understood. Currently, the definition of inflammation is mainly descriptive, not allowing a clear distinction of LLO from physiological immunological responses and its role in oncogenesis remains unclear. To gain insights into the prognostic potential of inflammation, we developed an agent-based model of immune and epithelial cell interactions in breast lobular epithelium. Physiological parameters were calibrated from breast tissue samples of women who underwent reduction mammoplasty due to orthopedic or cosmetic reasons. The model allowed to investigate the impact of menstrual cycle length and hormone status on inflammatory responses to cell turnover in the breast tissue. Our findings suggested that the immunological context, defined by the immune cell density, functional orientation and spatial distribution, contains prognostic information previously not captured by conventional diagnostic approaches.
    • Diversity of coupled oscillators can enhance their synchronization.

      Montaseri, Ghazal; Meyer-Hermann, Michael; BRICS, Braunschweiger Zentrum für Systembiologie, Rebenring 56, 38106 Braunschweig, Germany. (2016-10)
      The heterogeneity of coupled oscillators is important for the degree of their synchronization. According to the classical Kuramoto model, larger heterogeneity reduces synchronization. Here, we show that in a model for coupled pancreatic β-cells, higher diversity of the cells induces higher synchrony. We find that any system of coupled oscillators that oscillates on two time scales and in which heterogeneity causes a transition from chaotic to damped oscillations on the fast time scale exhibits this property. Thus, synchronization of a subset of oscillating systems can be enhanced by increasing the heterogeneity of the system constituents.
    • Inoculation density and nutrient level determine the formation of mushroom-shaped structures in Pseudomonas aeruginosa biofilms.

      Ghanbari, Azadeh; Dehghany, Jaber; Schwebs, Timo; Müsken, Mathias; Häussler, Susanne; Meyer-Hermann, Michael; BRICS, Braunschweiger Zentrum für Systembiologie, Rebenring 56, 38106 Braunschweig, Germany. (2016-09-09)
      Pseudomonas aeruginosa often colonises immunocompromised patients and the lungs of cystic fibrosis patients. It exhibits resistance to many antibiotics by forming biofilms, which makes it hard to eliminate. P. aeruginosa biofilms form mushroom-shaped structures under certain circumstances. Bacterial motility and the environment affect the eventual mushroom morphology. This study provides an agent-based model for the bacterial dynamics and interactions influencing bacterial biofilm shape. Cell motility in the model relies on recently published experimental data. Our simulations show colony formation by immotile cells. Motile cells escape from a single colony by nutrient chemotaxis and hence no mushroom shape develops. A high number density of non-motile colonies leads to migration of motile cells onto the top of the colonies and formation of mushroom-shaped structures. This model proposes that the formation of mushroom-shaped structures can be predicted by parameters at the time of bacteria inoculation. Depending on nutrient levels and the initial number density of stalks, mushroom-shaped structures only form in a restricted regime. This opens the possibility of early manipulation of spatial pattern formation in bacterial colonies, using environmental factors.
    • Visualizing antibody affinity maturation in germinal centers.

      Tas, Jeroen M J; Mesin, Luka; Pasqual, Giulia; Targ, Sasha; Jacobsen, Johanne T; Mano, Yasuko M; Chen, Casie S; Weill, Jean-Claude; Reynaud, Claude-Agnès; Browne, Edward P; et al. (2016-03-04)
      Antibodies somatically mutate to attain high affinity in germinal centers (GCs). There, competition between B cell clones and among somatic mutants of each clone drives an increase in average affinity across the population. The extent to which higher-affinity cells eliminating competitors restricts clonal diversity is unknown. By combining multiphoton microscopy and sequencing, we show that tens to hundreds of distinct B cell clones seed each GC and that GCs lose clonal diversity at widely disparate rates. Furthermore, efficient affinity maturation can occur in the absence of homogenizing selection, ensuring that many clones can mature in parallel within the same GC. Our findings have implications for development of vaccines in which antibodies with nonimmunodominant specificities must be elicited, as is the case for HIV-1 and influenza.
    • In Vivo Killing Capacity of Cytotoxic T Cells Is Limited and Involves Dynamic Interactions and T Cell Cooperativity.

      Halle, Stephan; Keyser, Kirsten Anja; Stahl, Felix Rolf; Busche, Andreas; Marquardt, Anja; Zheng, Xiang; Galla, Melanie; Heissmeyer, Vigo; Heller, Katrin; Boelter, Jasmin; et al. (2016-02-16)
      According to in vitro assays, T cells are thought to kill rapidly and efficiently, but the efficacy and dynamics of cytotoxic T lymphocyte (CTL)-mediated killing of virus-infected cells in vivo remains elusive. We used two-photon microscopy to quantify CTL-mediated killing in mice infected with herpesviruses or poxviruses. On average, one CTL killed 2-16 virus-infected cells per day as determined by real-time imaging and by mathematical modeling. In contrast, upon virus-induced MHC class I downmodulation, CTLs failed to destroy their targets. During killing, CTLs remained migratory and formed motile kinapses rather than static synapses with targets. Viruses encoding the calcium sensor GCaMP6s revealed strong heterogeneity in individual CTL functional capacity. Furthermore, the probability of death of infected cells increased for those contacted by more than two CTLs, indicative of CTL cooperation. Thus, direct visualization of CTLs during killing of virus-infected cells reveals crucial parameters of CD8(+) T cell immunity.
    • MicroRNA-155 controls affinity-based selection by protecting c-MYC+ B cells from apoptosis.

      Nakagawa, Rinako; Leyland, Rebecca; Müller, A; Lu, Dong; Turner, Martin; Arbore, Giuseppina; Phan, Tri Giang; Brink, Robert; Vigorito, Elena; Helmholtz Centre for infection research, Inhoffenstr. 7, 38124 Braunschweig, Germany. (2016-01-04)
      The production of high-affinity antibodies by B cells is essential for pathogen clearance. Antibody affinity for antigen is increased through the affinity maturation in germinal centers (GCs). This is an iterative process in which B cells cycle between proliferation coupled with the acquisition of mutations and antigen-based positive selection, resulting in retention of the highest-affinity B cell clones. The posttranscriptional regulator microRNA-155 (miR-155) is critical for efficient affinity maturation and the maintenance of the GCs; however, the cellular and molecular mechanism by which miR-155 regulates GC responses is not well understood. Here, we utilized a miR-155 reporter mouse strain and showed that miR-155 is coexpressed with the proto-oncogene encoding c-MYC in positively selected B cells. Functionally, miR-155 protected positively selected c-MYC+ B cells from apoptosis, allowing clonal expansion of this population, providing an explanation as to why Mir155 deletion impairs affinity maturation and promotes the premature collapse of GCs. We determined that miR-155 directly inhibits the Jumonji family member JARID2, which enhances B cell apoptosis when overexpressed, and thereby promotes GC B cell survival. Our findings also suggest that there is cooperation between c-MYC and miR-155 during the normal GC response, a cooperation that may explain how c-MYC and miR-155 can collaboratively function as oncogenes.
    • Functional modules of sigma factor regulons guarantee adaptability and evolvability.

      Binder, Sebastian C; Eckweiler, Denitsa; Schulz, Sebastian; Bielecka, Agata; Nicolai, Tanja; Franke, Raimo; Häussler, Susanne; Müller, A; Helmholtz Centre for infection research (HZI), Inhoffenstraße 7, 38124 Braunschweig, Germany. (2016)
      The focus of modern molecular biology turns from assigning functions to individual genes towards understanding the expression and regulation of complex sets of molecules. Here, we provide evidence that alternative sigma factor regulons in the pathogen Pseudomonas aeruginosa largely represent insulated functional modules which provide a critical level of biological organization involved in general adaptation and survival processes. Analysis of the operational state of the sigma factor network revealed that transcription factors functionally couple the sigma factor regulons and significantly modulate the transcription levels in the face of challenging environments. The threshold quality of newly evolved transcription factors was reached faster and more robustly in in silico testing when the structural organization of sigma factor networks was taken into account. These results indicate that the modular structures of alternative sigma factor regulons provide P. aeruginosa with a robust framework to function adequately in its environment and at the same time facilitate evolutionary change. Our data support the view that widespread modularity guarantees robustness of biological networks and is a key driver of evolvability.
    • Implications of Intravital Imaging of Murine Germinal Centers on the Control of B Cell Selection and Division.

      Binder, Sebastian C; Meyer-Hermann, Michael; BRICS, Braunschweiger Zentrum für Systembiologie, Rebenring 56, 38106 Braunschweig, Germany. (2016)
      Intravital imaging of antibody optimization in germinal center (GC) reactions has set a new dimension in the understanding of the humoral immune response during the last decade. The inclusion of spatio-temporal cellular dynamics in the research on GCs required analysis using the agent-based mathematical models. In this study, we integrate the available intravital imaging data from various research groups and incorporate these into a quantitative mathematical model of GC reactions and antibody affinity maturation. Interestingly, the integration of data concerning the spatial organization of GCs and B cell motility allows to draw conclusions on the strength of the selection pressure and the control of B cell division by T follicular helper cells.
    • Antibodies inside of a cell can change its outside: Can intrabodies provide a new therapeutic paradigm?

      Marschall, Andrea L J; Dübel, Stefan; BRICS, Braunschweiger Zentrum für Systembiologie, Rebenring 56, 38106 Braunschweig, Germany. (2016)
      Challenges posed by complex diseases such as cancer, chronic viral infections, neurodegenerative disorders and many others have forced researchers to think beyond classic small molecule drugs, exploring new therapeutic strategies such as therapy with RNAi, CRISPR/Cas9 or antibody therapies as single or as combination therapies with existing drugs. While classic antibody therapies based on parenteral application can only reach extracellular targets, intracellular application of antibodies could provide specific advantages but is so far little recognized in translational research. Intrabodies allow high specificity and targeting of splice variants or post translational modifications. At the same time off target effects can be minimized by thorough biochemical characterization. Knockdown of cellular proteins by intrabodies has been reported for a significant number of disease-relevant targets, including ErbB-2, EGFR, VEGFR-2, Metalloproteinase MMP2 and MMP9, β-amyloid protein, α-synuclein, HIV gp120, HCV core and many others. This review outlines the recent advances in ER intrabody technology and their potential use in therapy.
    • Cancer therapeutic potential of combinatorial immuno- and vasomodulatory interventions.

      Hatzikirou, H; Alfonso, J C L; Mühle, S; Stern, C; Weiss, S; Meyer-Hermann, Michael; BRICS, Braunschweiger Zentrum für Systembiologie, Rebenring 56, 38124 Braunschweig, Germany. (2015-11-06)
      Currently, most of the basic mechanisms governing tumour-immune system interactions, in combination with modulations of tumour-associated vasculature, are far from being completely understood. Here, we propose a mathematical model of vascularized tumour growth, where the main novelty is the modelling of the interplay between functional tumour vasculature and effector cell recruitment dynamics. Parameters are calibrated on the basis of different in vivo immunocompromised Rag1(-/-) and wild-type (WT) BALB/c murine tumour growth experiments. The model analysis supports that tumour vasculature normalization can be a plausible and effective strategy to treat cancer when combined with appropriate immunostimulations. We find that improved levels of functional tumour vasculature, potentially mediated by normalization or stress alleviation strategies, can provide beneficial outcomes in terms of tumour burden reduction and growth control. Normalization of tumour blood vessels opens a therapeutic window of opportunity to augment the antitumour immune responses, as well as to reduce intratumoral immunosuppression and induced hypoxia due to vascular abnormalities. The potential success of normalizing tumour-associated vasculature closely depends on the effector cell recruitment dynamics and tumour sizes. Furthermore, an arbitrary increase in the initial effector cell concentration does not necessarily imply better tumour control. We evidence the existence of an optimal concentration range of effector cells for tumour shrinkage. Based on these findings, we suggest a theory-driven therapeutic proposal that optimally combines immuno- and vasomodulatory interventions.
    • A Spatial Model of Insulin-Granule Dynamics in Pancreatic β-Cells.

      Dehghany, Jaber; Hoboth, Peter; Ivanova, Anna; Mziaut, Hassan; Müller, Andreas; Kalaidzidis, Yannis; Solimena, Michele; Müller, A; Helmholtz Centre for infection research, Inhoffenstr. 7, 38124 Braunschweig, Germany. (2015-08)
      Insulin secretion from pancreatic β-cells in response to sudden glucose stimulation is biphasic. Prolonged secretion in vivo requires synthesis, delivery to the plasma membrane (PM) and exocytosis of insulin secretory granules (SGs). Here, we provide the first agent-based space-resolved model for SG dynamics in pancreatic β-cells. Using recent experimental data, we consider a single β-cell with identical SGs moving on a phenomenologically represented cytoskeleton network. A single exocytotic machinery mediates SG exocytosis on the PM. This novel model reproduces the measured spatial organization of SGs and insulin secretion patterns under different stimulation protocols. It proposes that the insulin potentiation effect and the rising second-phase secretion are mainly due to the increasing number of docking sites on the PM. Furthermore, it shows that 6 min after glucose stimulation, the 'newcomer' SGs are recruited from a region within less than 600 nm from the PM.
    • Ebola virus infection modeling and identifiability problems.

      Nguyen, Van Kinh; Binder, Sebastian C; Boianelli, Alessandro; Müller, A; Hernandez-Vargas, Esteban Abelardo; Helmholtz Center for Infection Research (2015)
      The recent outbreaks of Ebola virus (EBOV) infections have underlined the impact of the virus as a major threat for human health. Due to the high biosafety classification of EBOV (level 4), basic research is very limited. Therefore, the development of new avenues of thinking to advance quantitative comprehension of the virus and its interaction with the host cells is urgently needed to tackle this lethal disease. Mathematical modeling of the EBOV dynamics can be instrumental to interpret Ebola infection kinetics on quantitative grounds. To the best of our knowledge, a mathematical modeling approach to unravel the interaction between EBOV and the host cells is still missing. In this paper, a mathematical model based on differential equations is used to represent the basic interactions between EBOV and wild-type Vero cells in vitro. Parameter sets that represent infectivity of pathogens are estimated for EBOV infection and compared with influenza virus infection kinetics. The average infecting time of wild-type Vero cells by EBOV is slower than in influenza infection. Simulation results suggest that the slow infecting time of EBOV could be compensated by its efficient replication. This study reveals several identifiability problems and what kind of experiments are necessary to advance the quantification of EBOV infection. A first mathematical approach of EBOV dynamics and the estimation of standard parameters in viral infections kinetics is the key contribution of this work, paving the way for future modeling works on EBOV infection.
    • A Stochastic Model for CD4+ T Cell Proliferation and Dissemination Network in Primary Immune Response.

      Boianelli, Alessandro; Pettini, Elena; Prota, Gennaro; Medaglini, Donata; Vicino, Antonio; Helmholtz Centre for infection research, Inhoffenstr. 7, 38124 Braunschweig, Germany. (2015)
      The study of the initial phase of the adaptive immune response after first antigen encounter provides essential information on the magnitude and quality of the immune response. This phase is characterized by proliferation and dissemination of T cells in the lymphoid organs. Modeling and identifying the key features of this phenomenon may provide a useful tool for the analysis and prediction of the effects of immunization. This knowledge can be effectively exploited in vaccinology, where it is of interest to evaluate and compare the responses to different vaccine formulations. The objective of this paper is to construct a stochastic model based on branching process theory, for the dissemination network of antigen-specific CD4+ T cells. The devised model is validated on in vivo animal experimental data. The model presented has been applied to the vaccine immunization context making references to simple proliferation laws that take into account division, death and quiescence, but it can also be applied to any context where it is of interest to study the dynamic evolution of a population.
    • Spatio-Temporal Dynamics of Hypoxia during Radiotherapy.

      Kempf, Harald; Bleicher, Marcus; Meyer-Hermann, Michael; Helmholtz Centre for infection research, Inhoffenstr. 7, 38124 Braunschweig, Germany. (2015)
      Tumour hypoxia plays a pivotal role in cancer therapy for most therapeutic approaches from radiotherapy to immunotherapy. The detailed and accurate knowledge of the oxygen distribution in a tumour is necessary in order to determine the right treatment strategy. Still, due to the limited spatial and temporal resolution of imaging methods as well as lacking fundamental understanding of internal oxygenation dynamics in tumours, the precise oxygen distribution map is rarely available for treatment planing. We employ an agent-based in silico tumour spheroid model in order to study the complex, localized and fast oxygen dynamics in tumour micro-regions which are induced by radiotherapy. A lattice-free, 3D, agent-based approach for cell representation is coupled with a high-resolution diffusion solver that includes a tissue density-dependent diffusion coefficient. This allows us to assess the space- and time-resolved reoxygenation response of a small subvolume of tumour tissue in response to radiotherapy. In response to irradiation the tumour nodule exhibits characteristic reoxygenation and re-depletion dynamics which we resolve with high spatio-temporal resolution. The reoxygenation follows specific timings, which should be respected in treatment in order to maximise the use of the oxygen enhancement effects. Oxygen dynamics within the tumour create windows of opportunity for the use of adjuvant chemotherapeutica and hypoxia-activated drugs. Overall, we show that by using modelling it is possible to follow the oxygenation dynamics beyond common resolution limits and predict beneficial strategies for therapy and in vitro verification. Models of cell cycle and oxygen dynamics in tumours should in the future be combined with imaging techniques, to allow for a systematic experimental study of possible improved schedules and to ultimately extend the reach of oxygenation monitoring available in clinical treatment.
    • Structural Heterogeneity of Mitochondria Induced by the Microtubule Cytoskeleton.

      Sukhorukov, Valerii M; Meyer-Hermann, Michael; Helmholtz Centre for infection research, Inhoffenstr. 7, 38124 Braunschweig, Germany. (2015)
      By events of fusion and fission mitochondria generate a partially interconnected, irregular network of poorly specified architecture. Here, its organization is examined theoretically by taking into account the physical association of mitochondria with microtubules. Parameters of the cytoskeleton mesh are derived from the mechanics of single fibers. The model of the mitochondrial reticulum is formulated in terms of a dynamic spatial graph. The graph dynamics is modulated by the density of microtubules and their crossings. The model reproduces the full spectrum of experimentally found mitochondrial configurations. In centrosome-organized cells, the chondriome is predicted to develop strong structural inhomogeneity between the cell center and the periphery. An integrated analysis of the cytoskeletal and the mitochondrial components reveals that the structure of the reticulum depends on the balance between anterograde and retrograde motility of mitochondria on microtubules, in addition to fission and fusion. We propose that it is the combination of the two processes that defines synergistically the mitochondrial structure, providing the cell with ample capabilities for its regulative adaptation.
    • Commentary: "Can Selective MHC Downregulation Explain the Specificity and Genetic Diversity of NK Cell Receptors?".

      Robert, Philippe A; Helmholtz Centre for infection research, Inhoffenstr. 7, D-38124 Braunschweig, Germany. (2015)
    • Observers for biological systems

      Alanis, Alma Y.; Hernandez-Gonzalez, Miguel; Hernandez-Vargas, Esteban Abelardo; Helmholtz Centre for infection research, Inhoffenstr. 7, D-38124 Braunschweig, Germany. (2014-11)
    • Optimal therapy scheduling for a simplified HIV infection model

      Hernandez-Vargas, Esteban Abelardo; Colaneri, Patrizio; Middleton, Richard H.; Helmholtz Centre for infection research, Inhoffenstr. 7, D-38124 Braunschweig, Germany. (2014-07-09)
    • Exploiting the Synergy between Carboplatin and ABT-737 in the Treatment of Ovarian Carcinomas.

      Jain, Harsh Vardhan; Richardson, Alan; Müller, A; Byrne, Helen M (2014)
      Platinum drug-resistance in ovarian cancers mediated by anti-apoptotic proteins such as Bcl-xL is a major factor contributing to the chemotherapeutic resistance of recurrent disease. Consequently, concurrent inhibition of Bcl-xL in combination with chemotherapy may improve treatment outcomes for patients. Here, we develop a mathematical model to investigate the potential of combination therapy with ABT-737, a small molecule inhibitor of Bcl-xL, and carboplatin, a platinum-based drug, on a simulated tumor xenograft. The model is calibrated against in vivo experimental data, wherein xenografts established in mice were treated with ABT-737 and/or carboplatin on a fixed periodic schedule. The validated model is used to predict the minimum drug load that will achieve a predetermined level of tumor growth inhibition, thereby maximizing the synergy between the two drugs. Our simulations suggest that the infusion-duration of each carboplatin dose is a critical parameter, with an 8-hour infusion of carboplatin given weekly combined with a daily bolus dose of ABT-737 predicted to minimize residual disease. The potential of combination therapy to prevent or delay the onset of carboplatin-resistance is also investigated. When resistance is acquired as a result of aberrant DNA-damage repair in cells treated with carboplatin, drug delivery schedules that induce tumor remission with even low doses of combination therapy can be identified. Intrinsic resistance due to pre-existing cohorts of resistant cells precludes tumor regression, but dosing strategies that extend disease-free survival periods can still be identified. These results highlight the potential of our model to accelerate the development of novel therapeutics such as BH3 mimetics.