• The bacterial second messenger cdiGMP exhibits promising activity as a mucosal adjuvant.

      Ebensen, Thomas; Schulze, Kai; Riese, Peggy; Morr, Michael; Guzmán, Carlos A; Department of Vaccinology, Helmholtz Centre for Infection Research, Inhoffenstrasse 7, D-38124 Braunschweig, Germany. (2007-08)
      The development of mucosal adjuvants is still a critical need in vaccinology. In the present work, we show that bis(3',5')-cyclic dimeric GMP (cdiGMP), a second messenger that modulates cell surface properties of several microorganisms, exerts potent activity as a mucosal adjuvant. BALB/c mice were immunized intranasally with the model antigen beta-galactosidase (beta-Gal) coadministered with cdiGMP. Animals receiving cdiGMP as an adjuvant showed significantly higher anti-beta-Gal immunoglobulin G (IgG) titers in sera than controls (i.e., 512-fold [P < 0.05]). Coadministration of cdiGMP also stimulated efficient beta-Gal-specific secretory IgA production in the lung (P < 0.016) and vagina (P < 0.036). Cellular immune responses were observed in response to both the beta-Gal protein and a peptide encompassing its major histocompatibility complex class I-restricted epitope. The IgG1-to-IgG2a ratio of anti-beta-Gal antibodies and the observed profiles of secreted cytokines suggest that a dominant Th1 response pattern is promoted by mucosal coadministration of cdiGMP. Finally, the use of cdiGMP as a mucosal adjuvant also led to the stimulation of in vivo cytotoxic T-lymphocyte responses in C57BL/6 mice intranasally immunized with ovalbumin and cdiGMP (up to 30% of specific lysis). The results obtained indicate that cdiGMP is a promising tool for the development of mucosal vaccines.
    • Immune modulator adamantylamide dipeptide stimulates efficient major histocompatibility complex class I-restricted responses in mice.

      Becker, Pablo D; Nörder, Miriam; Guzmán, Carlos Alberto; Grinstein, Saul; Helmholtz Centre for infection research, Inhoffenstr. 7, 38124 Braunschweig, Germany. (2007-05)
      Adamantylamide L-alanyl-D-isoglutamine (AdDP) is a synthetic adjuvant which belongs to the family of the desmuramyl peptides. AdDP exerts its adjuvant properties when it is administered either by the parenteral or by the mucosal route, leading to the elicitation of strong humoral responses at both the systemic and the mucosal levels. However, very little is known about the effect of AdDP on cellular immunity. Here we demonstrate that AdDP is able to stimulate cellular responses, which are characterized by the release of gamma interferon by CD8+ T cells when they are restimulated with a major histocompatibility complex class I-restricted peptide and strong in vivo lymphocyte-mediated cytotoxic activity. The capacity of AdDP to stimulate the elicitation of both cellular and humoral adaptive responses makes this adjuvant a promising tool for the development of mucosal vaccine formulations.
    • Use of S-[2,3-bispalmitoyiloxy-(2R)-propyl]-R-cysteinyl-amido-monomethoxy polyethylene glycol as an adjuvant improved protective immunity associated with a DNA vaccine encoding Cu,Zn superoxide dismutase of Brucella abortus in mice.

      Retamal-Díaz, Angello; Riquelme-Neira, Roberto; Sáez, Darwin; Rivera, Alejandra; Fernández, Pablo; Cabrera, Alex; Guzmán, Carlos A; Oñate, Angel; Helmholtz Centre for infection research, Inhoffenstr. 7, 38124 Braunschweig, Germany. (2014-11)
      This study was conducted to evaluate the immunogenicity and protective efficacy of a DNA vaccine encoding Brucella abortus Cu,Zn superoxide dismutase (SOD) using the Toll-like receptor 2/6 agonist S-[2,3-bispalmitoyiloxy-(2R)-propyl]-R-cysteinyl-amido-monomethoxy polyethylene glycol (BPPcysMPEG) as an adjuvant. Intranasal coadministration of BPPcysMPEG with a plasmid carrying the SOD-encoding gene (pcDNA-SOD) into BALB/c mice elicited antigen-specific humoral and cellular immune responses. Humoral responses were characterized by the stimulation of IgG2a and IgG1 and by the presence of SOD-specific secretory IgA in nasal and bronchoalveolar lavage fluids. Furthermore, T-cell proliferative responses and increased production of gamma interferon were also observed upon splenocyte restimulation with recombinant SOD. Cytotoxic responses were also stimulated, as demonstrated by the lysis of RB51-SOD-infected J774.A1 macrophages by cells recovered from immunized mice. The pcDNA-SOD/BPPcysMPEG formulation induced improved protection against challenge with the virulent strain B. abortus 2308 in BALB/c mice over that provided by pcDNA-SOD, suggesting the potential of this vaccination strategy against Brucella infection.