• A new adjuvanted nanoparticle-based H1N1 influenza vaccine induced antigen-specific local mucosal and systemic immune responses after administration into the lung.

      Neuhaus, Vanessa; Chichester, Jessica A; Ebensen, Thomas; Schwarz, Katharina; Hartman, Caitlin E; Shoji, Yoko; Guzmán, Carlos A; Yusibov, Vidadi; Sewald, Katherina; Braun, Armin (2014-05-30)
      Annually influenza virus infections are responsible for hospitalization and mortality, especially in high risk groups. Constant antigenic changes in seasonal influenza viruses resulted from antigenic shifts and antigenic drifts, enable emerging of novel virus subtypes that may reduce current vaccine efficacy and impose the continuous revision of vaccine component. Currently available vaccines are usually limited by their production processes in terms of rapid adaptation to new circulating subtypes in high quantities meeting the global demand. Thus, new approaches to rapidly manufacture high yields of influenza vaccines are required. New technologies to reach maximal protection with minimal vaccine doses also need to be developed. In this study, we evaluated the systemic and local immunogenicity of a new double-adjuvanted influenza vaccine administered at the site of infection, the respiratory tract. This vaccine combines a plant-produced H1N1 influenza hemagglutinin antigen (HAC1), a silica nanoparticle-based (SiO₂) drug delivery system and the mucosal adjuvant candidate bis-(3',5')-cyclic dimeric guanosine monophosphate (c-di-GMP). Mice were vaccinated by intratracheal route with HAC1/SiO₂ or HAC1/c-di-GMP (single-adjuvanted vaccine) or HAC1/SiO₂/c-di-GMP (double-adjuvanted vaccine) and evaluated for target-specific immune responses, such as hemagglutination inhibition and hemagglutinin-specific IgG titers, as well as local antibody (IgG and IgA) titers in the bronchoalveolar lavage (BAL). Furthermore, the HAC1-specific T-cell re-stimulation potential was assessed using precision-cut lung slices (PCLS) of vaccinated mice. The double-adjuvanted vaccine induced high systemic antibody responses comparable to the systemic vaccination control. In addition, it induced local IgG and IgA responses in the BAL. Furthermore, HAC1 induced a local T-cell response demonstrated by elevated IL-2 and IFN-γ levels in PCLS of c-di-GMP-vaccinated mice upon re-stimulation. Overall, the present study showed the potential of the double-adjuvanted vaccine to induce systemic humoral immune responses in intratracheally vaccinated mice. Furthermore, it induced a strong mucosal immune response, with evidence of antigen-primed T-cells in the lung.
    • The NKT cell ligand αgalactosylceramide suppresses allergic airway inflammation by induction of a Th1 response.

      Knothe, S; Mutschler, V; Rochlitzer, S; Winkler, C; Ebensen, T; Guzman, C A; Hohlfeld, J; Braun, A; Muller, M; Fraunhofer Institute for Toxicology and Experimental Medicine, Department of Immunology, Allergology and Immunotoxicology, Nikolai-Fuchs-Str. 1, 30625 Hannover, Germany. (2011-06-06)
      One experimental approach for the treatment of allergic reactions is the stimulation of immunoregulatory NKT cells with the synthetic glycolipid αgalactosylceramide. For a first evaluation of the immunomodulatory potential of αGalCerMPEG a human in vitro allergy model was exploited. Acting as an adjuvant, the glycolipid induced an enhanced Th1-biased allergen-specific immune response of autologous lymphocytes. In a mouse model of allergic airway inflammation, αGalCerMPEG-activated NKT cells promoted a cytokine environment in the spleen, leading to priming of Th1 cells. The shift towards a Th1-dominated allergen-specific immune response thus might mediate the abrogation of allergic airway inflammation and thereby might provide a valid option for therapeutic intervention.
    • Prime-boost immunization with cruzipain co-administered with MALP-2 triggers a protective immune response able to decrease parasite burden and tissue injury in an experimental Trypanosoma cruzi infection model.

      Cazorla, SI; Frank, FM; Becker, PD; Corral, RS; Guzmán, CA; Malchiodi, EL; Cátedra de Inmunología and Instituto de Estudios de la Inmunidad Humoral (IDEHU), CONICET-UBA, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Junin 956 4to P, 1113 Buenos Aires, Argentina; Departamento de Microbiología, Parasitología e Inmunología, Facultad de Medicina, Universidad de Buenos Aires, Argentina; Department of Vaccinology, Helmholtz Centre for Infection Research, Inhoffenstraße 7, D-38124 Braunschweig, Germany. (2008-04-07)
      Cruzipain (Cz), a key Trypanosoma cruzi enzyme, is a main candidate antigen for vaccines against Chagas' disease. We evaluated a vaccination protocol based on intradermal priming with recombinant Cz and intranasal boosting with rCz co-administered with a derivative of the TLR2/6 agonist MALP-2. Vaccination triggered strong systemic and mucosal antibody responses, and a vigorous cell-mediated immunity characterized by lymphoproliferation, DTH reactivity and IFN-gamma production. The immune responses protected against a lethal trypomastigote challenge and, upon sub-lethal infection, immunized mice showed reduction of tissue damage and normal enzymatic markers of muscle injury. This prime-boost regimen appears promising for further development, since warranted survival, provided efficient control of parasite load and restricted inflammatory myopathy.
    • A prime-boost vaccination protocol optimizes immune responses against the nucleocapsid protein of the SARS coronavirus.

      Schulze, Kai; Staib, Caroline; Schätzl, Hermann M; Ebensen, Thomas; Erfle, Volker; Guzman, Carlos A; Department of Vaccinology and Applied Microbiology, Helmholtz Centre for Infection Research, Inhoffenstrasse 7, D-38124 Braunschweig, Germany. (2008-12-02)
      Severe acute respiratory syndrome (SARS) is a serious infectious disease caused by the SARS coronavirus. We assessed the potential of prime-boost vaccination protocols based on the nucleocapsid (NC) protein co-administered with a derivative of the mucosal adjuvant MALP-2 or expressed by modified Vaccinia virus Ankara (MVA-NC) to stimulate humoral and cellular immune responses at systemic and mucosal levels. The obtained results demonstrated that strong immune responses can be elicited both at systemic and mucosal levels following a heterologous prime-boost vaccination protocol consisting in priming with NC protein add-mixed with MALP-2 by intranasal route and boosting with MVA-NC by intramuscular route.
    • The STING activator c-di-AMP exerts superior adjuvant properties than the formulation poly(I:C)/CpG after subcutaneous vaccination with soluble protein antigen or DEC-205-mediated antigen targeting to dendritic cells.

      Volckmar, Julia; Knop, Laura; Stegemann-Koniszewski, Sabine; Schulze, Kai; Ebensen, Thomas; Guzmán, Carlos A; Bruder, Dunja; HZI,Helmholtz-Zentrum für Infektionsforschung GmbH, Inhoffenstr. 7,38124 Braunschweig, Germany. (Elsevier, 2019-08-14)
      Vaccination is the most efficient strategy to protect from infectious diseases and the induction of a protective immune response not only depends on the nature of the antigen, but is also influenced by the vaccination strategy and the co-administration of adjuvants. Therefore, the precise monitoring of adjuvant candidates and their immune modulatory properties is a crucial step in vaccine development. Here, one central aspect is the induction of appropriate humoral and cellular effector mechanisms. In our study we performed a direct comparison of two promising candidates in adjuvant development, the STING activator bis-(3,5)-cyclic dimeric adenosine monophosphate (c-di-AMP) and the Toll-like receptor ligand formulation poly(I:C)/CpG. These were evaluated in C57BL/6 mice using the model antigen ovalbumin (OVA) in subcutaneous vaccination with soluble protein as well as in a dendritic cell (DC) targeting approach (αDEC-OVA). Strikingly, c-di-AMP as compared to poly(I:C)/CpG resulted in significantly higher antigen-specific IgG antibody levels when used in immunization with soluble OVA as well as in antigen targeting to DC. In vaccination with soluble OVA, c-di-AMP induced a significantly stronger CTL, Th1 and IFNγ-producing CD8+ memory T cell response than poly(I:C)/CpG. The response was CTL and Th1 cell dominated, a profile shared by both adjuvants. In the context of targeting OVA to DC, c-di-AMP induced significantly increased Th1 and Th2 cell responses as compared to poly(I:C)/CpG. Interestingly, the Th1 response dominated the overall T cell response only when c-di-AMP was used, indicating a distinct modulatory property of c-di-AMP when the DC targeting immunization approach was exploited. Taken together, we describe superior properties of c-di-AMP as compared to poly(I:C)/CpG in subcutaneous vaccination with soluble antigen as well as antigen targeting to DC. This indicates exceptionally effective adjuvant properties for c-di-AMP and provides compelling evidence of its potential for further adjuvant development, especially also when using DC targeting approaches.
    • Superior immunogenicity of HCV envelope glycoproteins when adjuvanted with cyclic-di-AMP, a STING activator or archaeosomes.

      Landi, A; Law, J; Hockman, D; Logan, M; Crawford, K; Chen, C; Kundu, J; Ebensen, T; Guzman, C A; Deschatelets, L; et al. (2017-12-15)
      Three decades after the discovery, hepatitis C virus (HCV) is still the leading cause of liver transplantation and poses a major threat to global health. In spite of recent advances in the development of direct acting antivirals, there is still a need for a prophylactic vaccine to limit the virus spread and protect at-risk populations, especially in developing countries, where the cost of the new treatments may severely limit access. The use of recombinant HCV glycoproteins E1E2 (rE1E2) in combination with the MF59, an oil-in-water emulsion-based adjuvant, has previously been shown to reduce the rate of chronicity in chimpanzees and to induce production of cross-neutralizing antibodies and cellular immune responses in human volunteers. To further improve neutralizing antibody responses in recipients along with robust T cell responses, we have explored the immunogenicity of different adjuvants when formulated with the HCV rE1E2 vaccine in mice. Our data show that cyclic di-adenosine monophosphate (c-di-AMP) and archaeosomes elicit strong neutralizing antibodies similar to those elicited using aluminum hydroxide/monophosphoryl lipid A (Alum/monophos. /MPLA) and MF59. However, both c-di-AMP and archaeosomes induced a more robust cellular immune response, which was confirmed by the detection of vaccine-specific poly-functional CD4+ T cells. We conclude that these adjuvants may substantially boost the immunogenicity of our E1E2 vaccine. In addition, our data also indicates that use of a partial or exclusive intranasal immunization regimen may also be feasible using c-di-AMP as adjuvant.
    • TRANSVAC workshop on standardisation and harmonisation of analytical platforms for HIV, TB and malaria vaccines: 'how can big data help?'.

      Dutruel, Céline; Thole, Jelle; Geels, Mark; Mollenkopf, Hans-Joachim; Ottenhoff, Tom; Guzman, Carlos A; Fletcher, Helen A; Leroy, Odile; Kaufmann, Stefan H E; Helmholtz Centre for Infection Research, Inhoffenstraße 7, 38124 Braunschweig, Germany. (2014-07-31)
      High-throughput analyses of RNA and protein expression are increasingly used for better understanding of vaccine-induced immunity and protection against infectious disease. With an increasing number of vaccine candidates in clinical development, it is timely to consider standardisation and harmonisation of sample collection, storage and analysis to ensure results of highest quality from these precious samples. These challenges were discussed by a group of international experts during a workshop organised by TRANSVAC, a European Commission-funded Research Infrastructure project. The main conclusions were: Platforms are rarely standardised for use in preclinical and clinical studies. Coordinated efforts should continue to harmonise the experimental set up of these studies, as well as the establishment of internal standards and controls. This will ensure comparability, efficiency and feasibility of the global analyses performed on preclinical and clinical data sets.
    • Vaccines against typhoid fever.

      Guzman, Carlos A; Borsutzky, Stefan; Griot-Wenk, Monika; Metcalfe, Ian C; Pearman, Jon; Collioud, Andre; Favre, Didier; Dietrich, Guido; Vaccine Research Group, Division of Microbiology, GBF-German Research Centre for Biotechnology, Mascheroder Weg 1, Braunschweig, Germany. (2006-05-01)
      Because of high infectivity and significant disease burden, typhoid fever constitutes a major global health problem. Implementation of adequate food handling practices and establishment of safe water supplies are the cornerstone for the development of an effective prevention program. However, vaccination against typhoid fever remains an essential tool for the effective management of this disease. Currently, there are two well tolerated and effective licensed vaccines. One is based on defined subunit virulence (Vi) polysaccharide antigen and can be administered either intramuscularly or subcutaneously and the other is based on the use of live attenuated bacteria for oral administration. The advantages and disadvantages of the various approaches taken in the development of a vaccine against typhoid fever are discussed, along with the potential for future vaccine candidates.