• Gene Expression Driven by a Strong Viral Promoter in MVA Increases Vaccination Efficiency by Enhancing Antibody Responses and Unmasking CD8⁺ T Cell Epitopes.

      Becker, Pablo D; Nörder, Miriam; Weissmann, Sebastian; Ljapoci, Ronny; Erfle, Volker; Drexler, Ingo; Guzmán, Carlos Alberto; Helmholtz Centre for infection research, Inhoffenstr. 7, 38124 Braunschweig, Germany. (2014-07-22)
      Viral vectors are promising tools for vaccination strategies and immunotherapies. However, CD8⁺ T cell responses against pathogen-derived epitopes are usually limited to dominant epitopes and antibody responses to recombinant encoded antigens (Ags) are mostly weak. We have previously demonstrated that the timing of viral Ag expression in infected professional Ag-presenting cells strongly shapes the epitope immunodominance hierarchy. T cells recognizing determinants derived from late viral proteins have a clear disadvantage to proliferate during secondary responses. In this work we evaluate the effect of overexpressing the recombinant Ag using the modified vaccinia virus early/late promoter H5 (mPH5). Although the Ag-expression from the natural promoter 7.5 (P7.5) and the mPH5 seemed similar, detailed analysis showed that mPH5 not only induces higher expression levels than P7.5 during early phase of infection, but also Ag turnover is enhanced. The strong overexpression during the early phase leads to broader CD8 T cell responses, while preserving the priming efficiency of stable Ags. Moreover, the increase in Ag-secretion favors the induction of strong antibody responses. Our findings provide the rationale to develop new strategies for fine-tuning the responses elicited by recombinant modified vaccinia virus Ankara by using selected promoters to improve the performance of this viral vector.
    • Immune Responses to Pandemic H1N1 Influenza Virus Infection in Pigs Vaccinated with a Conserved Hemagglutinin HA1 Peptide Adjuvanted with CAF01 or CDA/αGalCerMPEG.

      López-Serrano, Sergi; Cordoba, Lorena; Pérez-Maillo, Mónica; Pleguezuelos, Patricia; Remarque, Edmond J; Ebensen, Thomas; Guzmán, Carlos A; Christensen, Dennis; Segalés, Joaquim; Darji, Ayub; et al. (MDPI, 2021-07-06)
      This study aimed to evaluate the immune response and protection correlates against influenza virus (IV) infection in pigs vaccinated with the novel NG34 HA1 vaccine candidate adjuvanted with either CAF®01 or CDA/αGalCerMPEG (αGCM). Two groups of six pigs each were vaccinated intramuscularly twice with either NG34 + CAF®01 or NG34 + CDA/αGCM. As controls, groups of animals (n = 6 or 4) either non-vaccinated or vaccinated with human seasonal trivalent influenza vaccine or NG34 + Freund's adjuvant were included in the study. All animal groups were challenged with the 2009 pandemic (pdm09) strain of H1N1 (total amount of 7 × 106 TCID50/mL) via intranasal and endotracheal routes 21 days after second vaccination. Reduced consolidated lung lesions were observed both on days three and seven post-challenge in the animals vaccinated with NG34 + CAF®01, whereas higher variability with relatively more severe lesions in pigs of the NG34 + CDA/αGCM group on day three post-infection. Among groups, animals vaccinated with NG34 + CDA/αGCM showed higher viral loads in the lung at seven days post infection whereas animals from NG34 + CAF®01 completely abolished virus from the lower respiratory tract. Similarly, higher IFNγ secretion and stronger IgG responses against the NG34 peptide in sera was observed in animals from the NG34 + CAF®01 group as compared to the NG34 + CDA/αGCM. NG34-vaccinated pigs with adjuvanted CAF®01 or CDA/αGCM combinations resulted in different immune responses as well as outcomes in pathology and viral shedding.
    • Next Generation Influenza Vaccines: Looking into the Crystal Ball.

      Guzmán, Carlos Alberto; HZI,Helmholtz-Zentrum für Infektionsforschung GmbH, Inhoffenstr. 7,38124 Braunschweig, Germany. (MDPI, 2020-08-21)
      Influenza infections are responsible for significant number of deaths and overwhelming costs worldwide every year. Vaccination represents the only cost-efficient alternative to address this major problem in human health. However, current vaccines are fraught by many limitations, being far from optimal. Among them, the need to upgrade vaccines every year through a time-consuming process open to different caveats, and the critical fact that they exhibit poorer efficacy in individuals who are at high risk for severe infections. Where are we? How can knowledge and technologies contribute towards removing current roadblocks? What does the future offer in terms of next generation vaccines?
    • Prophylactic Multi-Subunit Vaccine against Chlamydia trachomatis In Vivo Evaluation in Mice.

      Lanfermann, Christian; Wintgens, Sebastian; Ebensen, Thomas; Kohn, Martin; Laudeley, Robert; Schulze, Kai; Rheinheimer, Claudia; Hegemann, Johannes H; Guzman, Carlos Alberto; Klos, Andreas; et al. (MDPI, 2021-06-06)
      Chlamydia trachomatis is the most frequent sexually-transmitted disease-causing bacterium. Urogenital serovars of this intracellular pathogen lead to urethritis and cervicitis. Ascending infections result in pelvic inflammatory disease, salpingitis, and oophoritis. One of 200 urogenital infections leads to tubal infertility. Serovars A-C cause trachoma with visual impairment. There is an urgent need for a vaccine. We characterized a new five-component subunit vaccine in a mouse vaccination-lung challenge infection model. Four recombinant Pmp family-members and Ctad1 from C. trachomatis serovar E, all of which participate in adhesion and binding of chlamydial elementary bodies to host cells, were combined with the mucosal adjuvant cyclic-di-adenosine monophosphate. Intranasal application led to a high degree of cross-serovar protection against urogenital and ocular strains of C. trachomatis, which lasted at least five months. Critical evaluated parameters were body weight, clinical score, chlamydial load, a granulocyte marker and the cytokines IFN-γ/TNF-α in lung homogenate. Vaccine antigen-specific antibodies and a mixed Th1/Th2/Th17 T cell response with multi-functional CD4+ and CD8+ T cells correlate with protection. However, serum-transfer did not protect the recipients suggesting that circulating antibodies play only a minor role. In the long run, our new vaccine might help to prevent the feared consequences of human C. trachomatis infections.
    • Responsiveness to Influenza Vaccination Correlates with NKG2C-Expression on NK Cells.

      Riese, Peggy; Trittel, Stephanie; Pathirana, Rishi D; Klawonn, Frank; Cox, Rebecca J; Guzmán, Carlos A; HZI,Helmholtz-Zentrum für Infektionsforschung GmbH, Inhoffenstr. 7,38124 Braunschweig, Germany. (MDPI, 2020-06-05)
      Influenza vaccination often results in a large percentage of low responders, especially in high-risk groups. As a first line of defense, natural killer (NK) cells play a crucial role in the fight against infections. However, their implication with regard to vaccine responsiveness is insufficiently assessed. Therefore, this study aimed at the validation of essential NK cell features potentially associated with differential vaccine responsiveness with a special focus on NKG2C- and/or CD57-expressing NK cells considered to harbor memory-like functions. To this end, 16 healthy volunteers were vaccinated with an adjuvanted pandemic influenza vaccine. Vaccine responders and low responders were classified according to their hemagglutination inhibition antibody titers. A majority of responders displayed enhanced frequencies of NKG2C-expressing NK cells 7- or 14-days post-vaccination as compared to low responders, whereas the expression of CD57 was not differentially modulated. The NK cell cytotoxic potential was found to be confined to CD56dimCD16+ NKG2C-expressing NK cells in the responders but not in the low responders, which was further confirmed by stochastic neighbor embedding analysis. The presented study is the first of its kind that ascribes CD56dimCD16+ NKG2C-expressing NK cells a crucial role in biasing adaptive immune responses upon influenza vaccination and suggests NKG2C as a potential biomarker in predicting pandemic influenza vaccine responsiveness.