• Analysis of bacterial core communities in the central Baltic by comparative RNA-DNA-based fingerprinting provides links to structure-function relationships.

      Brettar, Ingrid; Christen, Richard; Höfle, Manfred G; Department of Vaccinology and Applied Microbiology, Helmholtz Centre of Infection Research (HZI), Braunschweig, Germany. (2012-01)
      Understanding structure-function links of microbial communities is a central theme of microbial ecology since its beginning. To this end, we studied the spatial variability of the bacterioplankton community structure and composition across the central Baltic Sea at four stations, which were up to 450 km apart and at a depth profile representative for the central part (Gotland Deep, 235 m). Bacterial community structure was followed by 16S ribosomal RNA (rRNA)- and 16S rRNA gene-based fingerprints using single-strand conformation polymorphism (SSCP) electrophoresis. Species composition was determined by sequence analysis of SSCP bands. High similarities of the bacterioplankton communities across several hundred kilometers were observed in the surface water using RNA- and DNA-based fingerprints. In these surface communities, the RNA- and DNA-based fingerprints resulted in very different pattern, presumably indicating large difference between the active members of the community as represented by RNA-based fingerprints and the present members represented by the DNA-based fingerprints. This large discrepancy changed gradually over depth, resulting in highly similar RNA- and DNA-based fingerprints in the anoxic part of the water column below 130 m depth. A conceivable mechanism explaining this high similarity could be the reduced oxidative stress in the anoxic zone. The stable communities on the surface and in the anoxic zone indicate the strong influence of the hydrography on the bacterioplankton community structure. Comparative analysis of RNA- and DNA-based community structure provided criteria for the identification of the core community, its key members and their links to biogeochemical functions.
    • Analysis of structure and composition of bacterial core communities in mature drinking water biofilms and bulk water of a citywide network in Germany.

      Henne, Karsten; Kahlisch, Leila; Brettar, Ingrid; Höfle, Manfred G (2012-05)
      The bacterial core communities of bulk water and corresponding biofilms of a more than 20-year-old drinking water network were compared using 16S rRNA single-strand confirmation polymorphism (SSCP) fingerprints based on extracted DNA and RNA. The structure and composition of the bacterial core community in the bulk water was highly similar (>70%) across the city of Braunschweig, Germany, whereas all biofilm samples contained a unique community with no overlapping phylotypes from bulk water. Biofilm samples consisted mainly of Alphaproteobacteria (26% of all phylotypes), Gammaproteobacteria (11%), candidate division TM6 (11%), Chlamydiales (9%), and Betaproteobacteria (9%). The bulk water community consisted primarily of Bacteroidetes (25%), Betaproteobacteria (20%), Actinobacteria (16%), and Alphaproteobacteria (11%). All biofilm communities showed higher relative abundances of single phylotypes and a reduced richness compared to bulk water. Only biofilm communities sampled at nearby sampling points showed similar communities irrespective of support materials. In all of our bulk water studies, the community composition determined from 16S rRNA was completely different from the 16S rRNA gene-based community composition, whereas in biofilms both molecular fractions resulted in community compositions that were similar to each other. We hypothesize that a higher fraction of active bacterial phylotypes and a better protection from oxidative stress in drinking water biofilms are responsible for this higher similarity.
    • Assessing the viability of bacterial species in drinking water by combined cellular and molecular analyses.

      Kahlisch, Leila; Henne, Karsten; Gröbe, Lothar; Brettar, Ingrid; Höfle, Manfred G; Department of Vaccinology and Applied Microbiology, Helmholtz Centre for Infection Research, Inhoffenstrasse 7, 38124 Braunschweig, Germany. (2012-02)
      The question which bacterial species are present in water and if they are viable is essential for drinking water safety but also of general relevance in aquatic ecology. To approach this question we combined propidium iodide/SYTO9 staining ("live/dead staining" indicating membrane integrity), fluorescence-activated cell sorting (FACS) and community fingerprinting for the analysis of a set of tap water samples. Live/dead staining revealed that about half of the bacteria in the tap water had intact membranes. Molecular analysis using 16S rRNA and 16S rRNA gene-based single-strand conformation polymorphism (SSCP) fingerprints and sequencing of drinking water bacteria before and after FACS sorting revealed: (1) the DNA- and RNA-based overall community structure differed substantially, (2) the community retrieved from RNA and DNA reflected different bacterial species, classified as 53 phylotypes (with only two common phylotypes), (3) the percentage of phylotypes with intact membranes or damaged cells were comparable for RNA- and DNA-based analyses, and (4) the retrieved species were primarily of aquatic origin. The pronounced difference between phylotypes obtained from DNA extracts (dominated by Betaproteobacteria, Bacteroidetes, and Actinobacteria) and from RNA extracts (dominated by Alpha-, Beta-, Gammaproteobacteria, Bacteroidetes, and Cyanobacteria) demonstrate the relevance of concomitant RNA and DNA analyses for drinking water studies. Unexpected was that a comparable fraction (about 21%) of phylotypes with membrane-injured cells was observed for DNA- and RNA-based analyses, contradicting the current understanding that RNA-based analyses represent the actively growing fraction of the bacterial community. Overall, we think that this combined approach provides an interesting tool for a concomitant phylogenetic and viability analysis of bacterial species of drinking water.
    • High-resolution in situ genotyping of Legionella pneumophila populations in drinking water by multiple-locus variable-number tandem-repeat analysis using environmental DNA.

      Kahlisch, Leila; Henne, Karsten; Draheim, Josefin; Brettar, Ingrid; Höfle, Manfred G; Department of Vaccinology and Applied Microbiology, Helmholtz Centre for Infection Research (HZI), 38124 Braunschweig, Germany. (2010-09)
      Central to the understanding of infections by the waterborne pathogen Legionella pneumophila is its detection at the clonal level. Currently, multiple-locus variable-number tandem-repeat (VNTR) analysis (MLVA) of L. pneumophila isolates can be used as a tool for high-resolution genotyping. Since L. pneumophila is difficult to isolate, the isolation of outbreak strains often fails due to a viable but nonculturable (VBNC) state of the respective environmental population. Therefore, we developed a cultivation-independent approach to detect single clones in drinking water. This approach is based on the extraction of DNA from drinking water followed by PCR using a set of eight VNTR primer pairs necessary for MLVA genotyping of L. pneumophila. The PCR amplicons were analyzed by single-strand conformation polymorphism (SSCP) and capillary electrophoresis to obtain the respective MLVA profiles. Parallel to the high-resolution analysis, we used the same environmental DNA to quantify the number of L. pneumophila cells in drinking water using real-time PCR with 16S rRNA gene-targeted primers. We used a set of drinking water samples from a small-scale drinking water network to test our approach. With these samples we demonstrated that the developed approach was directly applicable to DNA obtained from drinking water. We were able to detect more L. pneumophila MLVA genotypes in drinking water than we could detect by isolation. Our approach could be a valuable tool to identify outbreak strains even after the outbreak has occurred and has the potential to be applied directly to clinical material.
    • Quantitative reverse transcription polymerase chain reaction analysis of Vibrio cholerae cells entering the viable but non-culturable state and starvation in response to cold shock.

      González-Escalona, Narjol; Fey, Axel; Höfle, Manfred G; Espejo, Romilio T; A Guzmán, Carlos; Vaccine Research Group, Division of Microbiology, GBF-German Research Centre for Biotechnology, Braunschweig, Germany. (2006-04)
      We performed a comparative analysis of the Vibrio cholerae strain El Tor 3083 entering the viable but non-culturable (VBNC) state and starvation after incubation in artificial seawater (ASW) at 4 and 15 degrees C respectively. To this end, we determined bacterial culturability and membrane integrity, as well as the cellular levels of 16S rRNA and mRNA for the tuf, rpoS and relA genes, which were assessed by real-time quantitative reverse transcription polymerase chain reaction (Q-RT-PCR). Bacterial cells entering the VBNC state showed a 154, 5.1 x 10(3), 24- and 23-fold reduction in the number of copies of 16S rRNA and mRNA for tuf, rpoS and relA, in comparison to exponentially growing cells. The differences were less striking between cells in the VBNC and starvation states. The mRNA for relA was selectively increased in VBNC cells (3.2-folds), whereas a 3.9-fold reduction was observed for 16S rRNA. The obtained results confirmed that key activities of the cellular metabolism (i.e. tuf representing protein synthesis, and relA or rpoS stress response) were still detected in bacteria entering the VBNC state and starvation. These data suggest that the new Q-RT-PCR methodology, based on the selected RNA targets, could be successfully exploited for the identification (rRNA) of V. cholerae and assessment of its metabolic activity (tuf, rpoS, relA mRNA) in environmental samples.