• Modified vaccinia virus Ankara exerts potent immune modulatory activities in a murine model.

      Nörder, Miriam; Becker, Pablo D; Drexler, Ingo; Link, Claudia; Erfle, Volker; Guzmán, Carlos A; Department of Vaccinology and Applied Microbiology, Helmholtz Centre for Infection Research, Braunschweig, Germany. (2010)
      BACKGROUND: Modified vaccinia virus Ankara (MVA), a highly attenuated strain of vaccinia virus, has been used as vaccine delivery vector in preclinical and clinical studies against infectious diseases and malignancies. Here, we investigated whether an MVA which does not encode any antigen (Ag) could be exploited as adjuvant per se. METHODOLOGY/PRINCIPAL FINDINGS: We showed that dendritic cells infected in vitro with non-recombinant (nr) MVA expressed maturation and activation markers and were able to efficiently present exogenously pulsed Ag to T cells. In contrast to the dominant T helper (Th) 1 biased responses elicited against Ags produced by recombinant MVA vectors, the use of nrMVA as adjuvant for the co-administered soluble Ags resulted in a long lasting mixed Th1/Th2 responses. CONCLUSIONS/SIGNIFICANCE: These findings open new ways to potentiate and modulate the immune responses to vaccine Ags depending on whether they are co-administered with MVA or encoded by recombinant viruses.
    • Vaccines against typhoid fever.

      Guzman, Carlos A; Borsutzky, Stefan; Griot-Wenk, Monika; Metcalfe, Ian C; Pearman, Jon; Collioud, Andre; Favre, Didier; Dietrich, Guido; Vaccine Research Group, Division of Microbiology, GBF-German Research Centre for Biotechnology, Mascheroder Weg 1, Braunschweig, Germany. (2006-05-01)
      Because of high infectivity and significant disease burden, typhoid fever constitutes a major global health problem. Implementation of adequate food handling practices and establishment of safe water supplies are the cornerstone for the development of an effective prevention program. However, vaccination against typhoid fever remains an essential tool for the effective management of this disease. Currently, there are two well tolerated and effective licensed vaccines. One is based on defined subunit virulence (Vi) polysaccharide antigen and can be administered either intramuscularly or subcutaneously and the other is based on the use of live attenuated bacteria for oral administration. The advantages and disadvantages of the various approaches taken in the development of a vaccine against typhoid fever are discussed, along with the potential for future vaccine candidates.