• Efficient nanoparticle-mediated needle-free transcutaneous vaccination via hair follicles requires adjuvantation.

      Mittal, Ankit; Schulze, Kai; Ebensen, Thomas; Weißmann, Sebastian; Hansen, Steffi; Lehr, Claus-Michael; Guzmán, Carlos A; Helmholtz Centre for Infection Research (HZI), Braunschweig, Germany. (2015-01)
      Trans-follicular (TF) vaccination has recently been studied as a unique route for non-invasive transcutaneous vaccination. The present study aims to extensively characterize the immune responses triggered by TF vaccination using ovalbumin loaded chitosan-PLGA (poly lactic-co-glycolic acid) nanoparticles without skin pre-treatment to preserve skin integrity. The impact of formulation composition i.e. antigenic solution or antigen-loaded nanoparticles with or without adjuvant [bis-(3',5')-cyclic dimeric adenosine monophosphate] on immune response quality following TF immunization was analyzed and compared with immune responses obtained after tape stripping the skin. The results presented in this study confirm the ability of nanoparticle based vaccine formulations to deliver antigen across the intact skin via the follicular route, but at the same time demonstrate the necessity to include adjuvants to generate efficient antigen-specific humoral and cellular immune responses.
    • Engineered dendritic cells from cord blood and adult blood accelerate effector T cell immune reconstitution against HCMV.

      Daenthanasanmak, Anusara; Salguero, Gustavo; Sundarasetty, Bala Sai; Waskow, Claudia; Cosgun, Kadriye Nehir; Guzman, Carlos A; Riese, Peggy; Gerasch, Laura; Schneider, Andreas; Ingendoh, Alexandra; et al. (2015)
      Human cytomegalovirus (HCMV) harmfully impacts survival after peripheral blood hematopoietic stem cell transplantation (PB-HSCT). Delayed immune reconstitution after cord blood (CB)-HSCT leads to even higher HCMV-related morbidity and mortality. Towards a feasible dendritic cell therapy to accelerate de novo immunity against HCMV, we validated a tricistronic integrase-defective lentiviral vector (coexpressing GM-CSF, IFN-α, and HCMV pp65 antigen) capable to directly induce self-differentiation of PB and CB monocytes into dendritic cells processing pp65 ("SmyleDCpp65"). In vitro, SmyleDCpp65 resisted HCMV infection, activated CD4(+) and CD8(+) T cells and expanded functional pp65-specific memory cytotoxic T lymphocytes (CTLs). CD34(+) cells obtained from PB and CB were transplanted into irradiated NOD.Rag1(-/-).IL2γc(-/-) mice. Donor-derived SmyleDCpp65 administration after PB-HSCT stimulated peripheral immune effects: lymph node remodeling, expansion of polyclonal effector memory CD8(+) T cells in blood, spleen and bone marrow, and pp65-reactive CTL and IgG responses. SmyleDCpp65 administration after CB-HSCT significantly stimulated thymopoiesis. Expanded frequencies of CD4(+)/CD8(+) T cell precursors containing increased levels of T-cell receptor excision circles in thymus correlated with peripheral expansion of effector memory CTL responses against pp65. The comparative in vivo modeling for PB and CB-HSCT provided dynamic and spatial information regarding human T and B cell reconstitution. In vivo potency supports future clinical development of SmyleDCpp65.
    • Engineered trivalent immunogen adjuvanted with a STING agonist confers protection against Trypanosoma cruzi infection.

      Sanchez Alberti, Andrés; Bivona, Augusto E; Cerny, Natacha; Schulze, Kai; Weißmann, Sebastian; Ebensen, Thomas; Morales, Celina; Padilla, Angel M; Cazorla, Silvia I; Tarleton, Rick L; et al. (2017)
      The parasite Trypanosoma cruzi is the causative agent of Chagas disease, a potentially life-threatening infection that represents a major health problem in Latin America. Several characteristics of this protozoan contribute to the lack of an effective vaccine, among them: its silent invasion mechanism, T. cruzi antigen redundancy and immunodominance without protection. Taking into account these issues, we engineered Traspain, a chimeric antigen tailored to present a multivalent display of domains from key parasitic molecules, combined with stimulation of the STING pathway by c-di-AMP as a novel prophylactic strategy. This formulation proved to be effective for the priming of functional humoral responses and pathogen-specific CD8+ and CD4+ T cells, compatible with a Th1/Th17 bias. Interestingly, vaccine effectiveness assessed across the course of infection, showed a reduction in parasite load and chronic inflammation in different proof of concept assays. In conclusion, this approach represents a promising tool against parasitic chronic infections.
    • Establishment of a Real-Time PCR-Based Approach for Accurate Quantification of Bacterial RNA Targets in Water, Using Salmonella as a Model Organism

      Fey, Axel; Eichler, Stefan; Flavier, Sébastien; Christen, Richard; Höfle, Manfred G.; Guzmán, Carlos A. (American Society for Microbiology, 2004-06)
    • Evaluation of the sublingual route for administration of influenza H5N1 virosomes in combination with the bacterial second messenger c-di-GMP.

      Pedersen, Gabriel Kristian; Ebensen, Thomas; Gjeraker, Ingrid Hjetland; Svindland, Signe; Bredholt, Geir; Guzmán, Carlos Alberto; Cox, Rebecca Jane; The Gade Institute, University of Bergen, Norway. gabriel.pedersen@gades.uib.no (2011)
      Avian influenza A H5N1 is a virus with pandemic potential. Mucosal vaccines are attractive as they have the potential to block viruses at the site of entry, thereby preventing both disease and further transmission. The intranasal route is safe for the administration of seasonal live-attenuated influenza vaccines, but may be less suitable for administration of pandemic vaccines. Research into novel mucosal routes is therefore needed. In this study, a murine model was used to compare sublingual administration with intranasal and intramuscular administration of influenza H5N1 virosomes (2 µg haemagglutinin; HA) in combination with the mucosal adjuvant (3',5')-cyclic dimeric guanylic acid (c-di-GMP). We found that sublingual immunisation effectively induced local and systemic H5N1-specific humoral and cellular immune responses but that the magnitude of response was lower than after intranasal administration. However, both the mucosal routes were superior to intramuscular immunisation for induction of local humoral and systemic cellular immune responses including high frequencies of splenic H5N1-specific multifunctional (IL-2+TNF-α+) CD4+ T cells. The c-di-GMP adjuvanted vaccine elicited systemic haemagglutination inhibition (HI) antibody responses (geometric mean titres ≥ 40) both when administered sublingually, intranasally and inramuscularly. In addition, salivary HI antibodies were elicited by mucosal, but not intramuscular vaccination. We conclude that the sublingual route is an attractive alternative for administration of pandemic influenza vaccines.
    • Evolution of hepatitis C virus hypervariable region 1 in immunocompetent children born to HCV-infected mothers.

      Gismondi, M I; Becker, P D; Díaz Carrasco, J M; Guzmán, C A; Campos, R H; Preciado, M V; Laboratorio de Biología Molecular, División Patología, Hospital de Niños Ricardo Gutiérrez, Buenos Aires, Argentina. (2009-05)
      Hepatitis C virus (HCV) hypervariable region 1 (HVR1) is the most variable region of the viral genome and its heterogeneity reflects the virus-host interplay during chronicity. Paediatric HCV-infected patients develop liver disease with typical clinical features. Here, the evolution of HVR1 and its adjacent regions were ascertained in plasma samples of two HCV-positive children during a 5-year follow-up period. We report an almost complete conservation of the HVR1 amino acid sequence over time, with underlying nucleotide variability both within and outside HVR1, suggesting some kind of constraint on virus evolution, particularly within HVR1. Although overall d(N)/d(S) rates [rates of nonsynonymous nucleotide substitutions per nonsynonymous site (d(N)) and synonymous nucleotide substitutions per synonymous site (d(S))] were <1 in both patients, a high resolution analysis of selection pressures exerted at the codon level revealed few sites subject to selection and an absolute predominance of invariable positions within HVR1. The HVR1 amino acid sequences showed the antigenic properties expected for this region. Taken together, these data suggest peculiar evolutionary dynamics in our patients, which could be attributed to a mechanism of nucleotide invariability along with purifying selection operating on the HVR1. The lack of HVR1 variability may reflect the adaptation of the virus to a particular environment within each patient or a phenomenon of immune tolerance generated in these immunocompetent patients earlier in life.
    • Exploitation of prokaryotic expression systems based on the salicylate-dependent control circuit encompassing nahR/P(sal)::xylS2 for biotechnological applications.

      Becker, Pablo D; Royo, Jose L; Guzman, Carlos A; Helmholtz Centre for infection research, Inhoffenstr. 7, 38124 Braunschweig, Germany. (2017-02-15)
      Expression vectors appear to be an indispensable tool for both biological studies and biotechnological applications. Controlling gene overexpression becomes a critical issue when protein production is desired. In addition to several aspects regarding toxicity or plasmid instability, tight control of gene expression is an essential factor in biotechnological processes. Thus, the search for better-controlled circuits is an important issue among biotechnologists. Traditionally, expression systems involve a single regulatory protein operating over a target promoter. However, these circuits are limited on their induction ratios (e.g., by their restriction in the maximal expression capacity, by their leakiness under non-induced conditions). Due to these limitations, regulatory cascades, which are far more efficient, are necessary for biotechnological applications. Thus, regulatory circuits with two modules operating in cascade offer a significant advantage. In this review, we describe the regulatory cascade based on two salicylate-responsive transcriptional regulators of Pseudomonas putida (nahR/P(sal)::xylS2), its properties, and contribution to a tighter control over heterologous gene expression in different applications.Nowadays, heterologous expression has been proven to be an indispensable tool for tackling basic biological questions, as well as for developing biotechnological applications. As the nature of the protein of interest becomes more complex, biotechnologists find that a tight control of gene expression is a key factor which conditions the success of the downstream purification process, as well as the interpretation of the results in other type of studies. Fortunately, different expression systems can be found in the market, each of them with their own pros and cons. In this review we discuss the exploitation of prokaryotic expression systems based on a promising expression system, the salicylate-dependent control circuit encompassing nahR/P(sal)::xylS2, as well as some of the improvements that have been done on this system to exploit it more efficiently in the context of both biotechnological applications and basic research.
    • Gene Expression Driven by a Strong Viral Promoter in MVA Increases Vaccination Efficiency by Enhancing Antibody Responses and Unmasking CD8⁺ T Cell Epitopes.

      Becker, Pablo D; Nörder, Miriam; Weissmann, Sebastian; Ljapoci, Ronny; Erfle, Volker; Drexler, Ingo; Guzmán, Carlos Alberto; Helmholtz Centre for infection research, Inhoffenstr. 7, 38124 Braunschweig, Germany. (2014-07-22)
      Viral vectors are promising tools for vaccination strategies and immunotherapies. However, CD8⁺ T cell responses against pathogen-derived epitopes are usually limited to dominant epitopes and antibody responses to recombinant encoded antigens (Ags) are mostly weak. We have previously demonstrated that the timing of viral Ag expression in infected professional Ag-presenting cells strongly shapes the epitope immunodominance hierarchy. T cells recognizing determinants derived from late viral proteins have a clear disadvantage to proliferate during secondary responses. In this work we evaluate the effect of overexpressing the recombinant Ag using the modified vaccinia virus early/late promoter H5 (mPH5). Although the Ag-expression from the natural promoter 7.5 (P7.5) and the mPH5 seemed similar, detailed analysis showed that mPH5 not only induces higher expression levels than P7.5 during early phase of infection, but also Ag turnover is enhanced. The strong overexpression during the early phase leads to broader CD8 T cell responses, while preserving the priming efficiency of stable Ags. Moreover, the increase in Ag-secretion favors the induction of strong antibody responses. Our findings provide the rationale to develop new strategies for fine-tuning the responses elicited by recombinant modified vaccinia virus Ankara by using selected promoters to improve the performance of this viral vector.
    • Gene expression profiles of T cells from hepatitis E virus infected patients in acute and resolving phase.

      TrehanPati, Nirupma; Sukriti, Sukriti; Geffers, Robert; Hissar, Syed; Riese, Peggy; Toepfer, Tanja; Guzman, Carlos A; Sarin, Shiv Kumar; Institute of Liver and Biliary Sciences, D-1, Vasant Kunj, 110 070, New Delhi, India. trehanpati@gmail.com (2011-06)
      Approximately 50% of acute viral hepatitis in young adults and in pregnant women is due to hepatitis E virus (HEV) infection in developing countries. T cell-mediated immune injury probably plays a key role in the pathogenesis of acute hepatitis illness. However, there is a paucity of data on the global gene expression programs activated on T cells, which are subsequently responsible for T cell recruitment to the liver and triggering of immune injury.
    • Generation and analysis of the improved human HAL9/10 antibody phage display libraries.

      Kügler, Jonas; Wilke, Sonja; Meier, Doris; Tomszak, Florian; Frenzel, André; Schirrmann, Thomas; Dübel, Stefan; Garritsen, Henk; Hock, Björn; Toleikis, Lars; et al. (2015)
      Antibody phage display is a proven key technology that allows the generation of human antibodies for diagnostics and therapy. From naive antibody gene libraries - in theory - antibodies against any target can be selected. Here we describe the design, construction and characterization of an optimized antibody phage display library.
    • Generation of human antigen-specific monoclonal IgM antibodies using vaccinated "human immune system" mice.

      Becker, Pablo D; Legrand, Nicolas; van Geelen, Caroline M M; Noerder, Miriam; Huntington, Nicholas D; Lim, Annick; Yasuda, Etsuko; Diehl, Sean A; Scheeren, Ferenc A; Ott, Michael; et al. (2010)
      Passive transfer of antibodies not only provides immediate short-term protection against disease, but also can be exploited as a therapeutic tool. However, the 'humanization' of murine monoclonal antibodies (mAbs) is a time-consuming and expensive process that has the inherent drawback of potentially altering antigenic specificity and/or affinity. The immortalization of human B cells represents an alternative for obtaining human mAbs, but relies on the availability of biological samples from vaccinated individuals or convalescent patients. In this work we describe a novel approach to generate fully human mAbs by combining a humanized mouse model with a new B cell immortalization technique.
    • Hepatitis C Virus Isolates from Argentina Disclose a Novel Genotype 1-Associated Restriction Pattern

      Gismondi, María Inés; Staendner, Lothar Heinrich; Grinstein, Saúl; Guzmán, Carlos Alberto; Preciado, María Victoria (American Society for Microbiology, 2004-03)
    • High-resolution in situ genotyping of Legionella pneumophila populations in drinking water by multiple-locus variable-number tandem-repeat analysis using environmental DNA.

      Kahlisch, Leila; Henne, Karsten; Draheim, Josefin; Brettar, Ingrid; Höfle, Manfred G; Department of Vaccinology and Applied Microbiology, Helmholtz Centre for Infection Research (HZI), 38124 Braunschweig, Germany. (2010-09)
      Central to the understanding of infections by the waterborne pathogen Legionella pneumophila is its detection at the clonal level. Currently, multiple-locus variable-number tandem-repeat (VNTR) analysis (MLVA) of L. pneumophila isolates can be used as a tool for high-resolution genotyping. Since L. pneumophila is difficult to isolate, the isolation of outbreak strains often fails due to a viable but nonculturable (VBNC) state of the respective environmental population. Therefore, we developed a cultivation-independent approach to detect single clones in drinking water. This approach is based on the extraction of DNA from drinking water followed by PCR using a set of eight VNTR primer pairs necessary for MLVA genotyping of L. pneumophila. The PCR amplicons were analyzed by single-strand conformation polymorphism (SSCP) and capillary electrophoresis to obtain the respective MLVA profiles. Parallel to the high-resolution analysis, we used the same environmental DNA to quantify the number of L. pneumophila cells in drinking water using real-time PCR with 16S rRNA gene-targeted primers. We used a set of drinking water samples from a small-scale drinking water network to test our approach. With these samples we demonstrated that the developed approach was directly applicable to DNA obtained from drinking water. We were able to detect more L. pneumophila MLVA genotypes in drinking water than we could detect by isolation. Our approach could be a valuable tool to identify outbreak strains even after the outbreak has occurred and has the potential to be applied directly to clinical material.
    • Identification of a Thiomicrospira denitrificans-Like Epsilonproteobacterium as a Catalyst for Autotrophic Denitrification in the Central Baltic Sea†

      Brettar, Ingrid; Labrenz, Matthias; Flavier, Sébastien; Bötel, Julia; Kuosa, Harri; Christen, Richard; Höfle, Manfred G. (American Society for Microbiology, 2006-02)
    • Immune modulator adamantylamide dipeptide stimulates efficient major histocompatibility complex class I-restricted responses in mice.

      Becker, Pablo D; Nörder, Miriam; Guzmán, Carlos Alberto; Grinstein, Saul; Helmholtz Centre for infection research, Inhoffenstr. 7, 38124 Braunschweig, Germany. (2007-05)
      Adamantylamide L-alanyl-D-isoglutamine (AdDP) is a synthetic adjuvant which belongs to the family of the desmuramyl peptides. AdDP exerts its adjuvant properties when it is administered either by the parenteral or by the mucosal route, leading to the elicitation of strong humoral responses at both the systemic and the mucosal levels. However, very little is known about the effect of AdDP on cellular immunity. Here we demonstrate that AdDP is able to stimulate cellular responses, which are characterized by the release of gamma interferon by CD8+ T cells when they are restimulated with a major histocompatibility complex class I-restricted peptide and strong in vivo lymphocyte-mediated cytotoxic activity. The capacity of AdDP to stimulate the elicitation of both cellular and humoral adaptive responses makes this adjuvant a promising tool for the development of mucosal vaccine formulations.
    • Immune modulators with defined molecular targets: cornerstone to optimize rational vaccine design.

      Ebensen, Thomas; Guzmán, Carlos A; Department of Vaccinology, Helmholtz Centre for Infection Research, Braunschweig, Germany. (2011-03-02)
      Vaccination remains the most valuable tool for preventing infectious diseases. However, the performance of many existing vaccines should be improved and there are diseases for which vaccines are still not available. The use of well-defined antigens for the generation of subunit vaccines has led to products with an improved safety profile. However, purified antigens are usually poorly immunogenic, making essential the use of adjuvants. Despite the fact that adjuvants have been used to increase the immunogenicity of vaccines for more than 70 years, only a handful has been licensed for human use (e.g., aluminium salts, the micro-fluidized squalene-in-water emulsion MF59 and monophosphoryl lipid A). Thus, the development of new adjuvants which are able to promote broad and sustained immune responses at systemic and mucosal levels still remains as a major challenge in vaccinology. Recent advances in our understanding of the immune system have facilitated the identification of new biological targets for screening programs aimed at the discovery of novel immune stimulators. This resulted in the identification of new candidate adjuvants, which made possible the modulation of the immune responses elicited according to specific needs. A number of promising adjuvants which are currently under preclinical or clinical development will be described in this review.
    • Immune Responses to Pandemic H1N1 Influenza Virus Infection in Pigs Vaccinated with a Conserved Hemagglutinin HA1 Peptide Adjuvanted with CAF01 or CDA/αGalCerMPEG.

      López-Serrano, Sergi; Cordoba, Lorena; Pérez-Maillo, Mónica; Pleguezuelos, Patricia; Remarque, Edmond J; Ebensen, Thomas; Guzmán, Carlos A; Christensen, Dennis; Segalés, Joaquim; Darji, Ayub; et al. (MDPI, 2021-07-06)
      This study aimed to evaluate the immune response and protection correlates against influenza virus (IV) infection in pigs vaccinated with the novel NG34 HA1 vaccine candidate adjuvanted with either CAF®01 or CDA/αGalCerMPEG (αGCM). Two groups of six pigs each were vaccinated intramuscularly twice with either NG34 + CAF®01 or NG34 + CDA/αGCM. As controls, groups of animals (n = 6 or 4) either non-vaccinated or vaccinated with human seasonal trivalent influenza vaccine or NG34 + Freund's adjuvant were included in the study. All animal groups were challenged with the 2009 pandemic (pdm09) strain of H1N1 (total amount of 7 × 106 TCID50/mL) via intranasal and endotracheal routes 21 days after second vaccination. Reduced consolidated lung lesions were observed both on days three and seven post-challenge in the animals vaccinated with NG34 + CAF®01, whereas higher variability with relatively more severe lesions in pigs of the NG34 + CDA/αGCM group on day three post-infection. Among groups, animals vaccinated with NG34 + CDA/αGCM showed higher viral loads in the lung at seven days post infection whereas animals from NG34 + CAF®01 completely abolished virus from the lower respiratory tract. Similarly, higher IFNγ secretion and stronger IgG responses against the NG34 peptide in sera was observed in animals from the NG34 + CAF®01 group as compared to the NG34 + CDA/αGCM. NG34-vaccinated pigs with adjuvanted CAF®01 or CDA/αGCM combinations resulted in different immune responses as well as outcomes in pathology and viral shedding.
    • Immunization with Tc52 or its amino terminal domain adjuvanted with c-di-AMP induces Th17+Th1 specific immune responses and confers protection against Trypanosoma cruzi.

      Matos, Marina N; Cazorla, Silvia I; Schulze, Kai; Ebensen, Thomas; Guzmán, Carlos Alberto; Malchiodi, Emilio L; Helmholtz Centre for infection research, Inhoffenstr. 7, 38124 Braunschweig, Germany. (2017-02)
      The development of new adjuvants enables fine modulation of the elicited immune responses. Ideally, the use of one or more adjuvants should result in the induction of a protective immune response against the specific pathogen. We have evaluated the immune response and protection against Trypanosoma cruzi infection in mice vaccinated with recombinant Tc52 or its N- and C-terminal domains (NTc52 and CTc52) adjuvanted either with the STING (Stimulator of Interferon Genes) agonist cyclic di-AMP (c-di-AMP), a pegylated derivative of α-galactosylceramide (αGC-PEG), or oligodeoxynucleotides containing unmethylated CpG motifs (ODN-CpG). All groups immunized with the recombinant proteins plus adjuvant: Tc52+c-di-AMP, NTc52+c-di-AMP, CTc52+c-di-AMP, NTc52+c-di-AMP+αGC-PEG, NTc52+CpG, developed significantly higher anti-Tc52 IgG titers than controls. Groups immunized with c-di-AMP and Tc52, NTc52 or CTc52 showed the highest Tc52-specific IgA titers in nasal lavages. All groups immunized with the recombinant proteins plus adjuvant developed a strong specific cellular immune response in splenocytes and lymph node cells with significant differences for groups immunized with c-di-AMP and Tc52, NTc52 or CTc52. These groups also showed high levels of Tc52-specific IL-17 and IFN-γ producing cells, while NTc52+CpG group only showed significant difference with control in IFN-γ producing cells. Groups immunized with c-di-AMP and Tc52, NTc52 or CTc52 developed predominantly a Th17 and Th1immune response, whereas for NTc52+CpG it was a dominant Th1 response. It was previously described that αGC-PEG inhibits Th17 differentiation by activating NKT cells. Thus, in this work we have also included a group immunized with both adjuvants (NTc52+c-di-AMP+αGC-PEG) with the aim to modulate the Th17 response induced by c-di-AMP. This group showed a significant reduction in the number of Tc52-specific IL-17 producing splenocytes, as compared to the group NTc52+c-di-AMP, which has in turn correlated with a reduction in protection against infection. These results suggest that the Th17 immune response developed after immunizing with NTc52+c-di-AMP could have a protective role against T. cruzi infection. Groups NTc52+c-di-AMP, Tc52+c-di-AMP and NTc52PB, were the ones that showed better protection against infection with lower parasitemia and weight loss, and higher survival.
    • In vivo gene regulation in Salmonella spp. by a salicylate-dependent control circuit.

      Royo, José Luis; Becker, Pablo Daniel; Camacho, Eva María; Cebolla, Angel; Link, Claudia; Santero, Eduardo; Guzmán, Carlos Alberto; Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide-Consejo Superior de Investigaciones Científicas, Carretera, Utrera, Km 1, E-41013 Sevilla, Spain. (2007-11)
      Systems allowing tightly regulated expression of prokaryotic genes in vivo are important for performing functional studies of bacterial genes in host-pathogen interactions and establishing bacteria-based therapies. We integrated a regulatory control circuit activated by acetyl salicylic acid (ASA) in attenuated Salmonella enterica that carries an expression module with a gene of interest under control of the XylS2-dependent Pm promoter. This resulted in 20-150-fold induction ex vivo. The regulatory circuit was also efficiently induced by ASA when the bacteria resided in eukaryotic cells, both in vitro and in vivo. To validate the circuit, we administered Salmonella spp., carrying an expression module encoding the 5-fluorocytosine-converting enzyme cytosine deaminase in the bacterial chromosome or in a plasmid, to mice with tumors. Induction with ASA before 5-fluorocytosine administration resulted in a significant reduction of tumor growth. These results demonstrate the usefulness of the regulatory control circuit to selectively switch on gene expression during bacterial infection.