• Gene Expression Driven by a Strong Viral Promoter in MVA Increases Vaccination Efficiency by Enhancing Antibody Responses and Unmasking CD8⁺ T Cell Epitopes.

      Becker, Pablo D; Nörder, Miriam; Weissmann, Sebastian; Ljapoci, Ronny; Erfle, Volker; Drexler, Ingo; Guzmán, Carlos Alberto; Helmholtz Centre for infection research, Inhoffenstr. 7, 38124 Braunschweig, Germany. (2014-07-22)
      Viral vectors are promising tools for vaccination strategies and immunotherapies. However, CD8⁺ T cell responses against pathogen-derived epitopes are usually limited to dominant epitopes and antibody responses to recombinant encoded antigens (Ags) are mostly weak. We have previously demonstrated that the timing of viral Ag expression in infected professional Ag-presenting cells strongly shapes the epitope immunodominance hierarchy. T cells recognizing determinants derived from late viral proteins have a clear disadvantage to proliferate during secondary responses. In this work we evaluate the effect of overexpressing the recombinant Ag using the modified vaccinia virus early/late promoter H5 (mPH5). Although the Ag-expression from the natural promoter 7.5 (P7.5) and the mPH5 seemed similar, detailed analysis showed that mPH5 not only induces higher expression levels than P7.5 during early phase of infection, but also Ag turnover is enhanced. The strong overexpression during the early phase leads to broader CD8 T cell responses, while preserving the priming efficiency of stable Ags. Moreover, the increase in Ag-secretion favors the induction of strong antibody responses. Our findings provide the rationale to develop new strategies for fine-tuning the responses elicited by recombinant modified vaccinia virus Ankara by using selected promoters to improve the performance of this viral vector.
    • Gene expression profiles of T cells from hepatitis E virus infected patients in acute and resolving phase.

      TrehanPati, Nirupma; Sukriti, Sukriti; Geffers, Robert; Hissar, Syed; Riese, Peggy; Toepfer, Tanja; Guzman, Carlos A; Sarin, Shiv Kumar; Institute of Liver and Biliary Sciences, D-1, Vasant Kunj, 110 070, New Delhi, India. trehanpati@gmail.com (2011-06)
      Approximately 50% of acute viral hepatitis in young adults and in pregnant women is due to hepatitis E virus (HEV) infection in developing countries. T cell-mediated immune injury probably plays a key role in the pathogenesis of acute hepatitis illness. However, there is a paucity of data on the global gene expression programs activated on T cells, which are subsequently responsible for T cell recruitment to the liver and triggering of immune injury.
    • Generation and analysis of the improved human HAL9/10 antibody phage display libraries.

      Kügler, Jonas; Wilke, Sonja; Meier, Doris; Tomszak, Florian; Frenzel, André; Schirrmann, Thomas; Dübel, Stefan; Garritsen, Henk; Hock, Björn; Toleikis, Lars; et al. (2015)
      Antibody phage display is a proven key technology that allows the generation of human antibodies for diagnostics and therapy. From naive antibody gene libraries - in theory - antibodies against any target can be selected. Here we describe the design, construction and characterization of an optimized antibody phage display library.
    • Generation of human antigen-specific monoclonal IgM antibodies using vaccinated "human immune system" mice.

      Becker, Pablo D; Legrand, Nicolas; van Geelen, Caroline M M; Noerder, Miriam; Huntington, Nicholas D; Lim, Annick; Yasuda, Etsuko; Diehl, Sean A; Scheeren, Ferenc A; Ott, Michael; et al. (2010)
      Passive transfer of antibodies not only provides immediate short-term protection against disease, but also can be exploited as a therapeutic tool. However, the 'humanization' of murine monoclonal antibodies (mAbs) is a time-consuming and expensive process that has the inherent drawback of potentially altering antigenic specificity and/or affinity. The immortalization of human B cells represents an alternative for obtaining human mAbs, but relies on the availability of biological samples from vaccinated individuals or convalescent patients. In this work we describe a novel approach to generate fully human mAbs by combining a humanized mouse model with a new B cell immortalization technique.
    • Hepatitis C Virus Isolates from Argentina Disclose a Novel Genotype 1-Associated Restriction Pattern

      Gismondi, María Inés; Staendner, Lothar Heinrich; Grinstein, Saúl; Guzmán, Carlos Alberto; Preciado, María Victoria (American Society for Microbiology, 2004-03)
    • High-resolution in situ genotyping of Legionella pneumophila populations in drinking water by multiple-locus variable-number tandem-repeat analysis using environmental DNA.

      Kahlisch, Leila; Henne, Karsten; Draheim, Josefin; Brettar, Ingrid; Höfle, Manfred G; Department of Vaccinology and Applied Microbiology, Helmholtz Centre for Infection Research (HZI), 38124 Braunschweig, Germany. (2010-09)
      Central to the understanding of infections by the waterborne pathogen Legionella pneumophila is its detection at the clonal level. Currently, multiple-locus variable-number tandem-repeat (VNTR) analysis (MLVA) of L. pneumophila isolates can be used as a tool for high-resolution genotyping. Since L. pneumophila is difficult to isolate, the isolation of outbreak strains often fails due to a viable but nonculturable (VBNC) state of the respective environmental population. Therefore, we developed a cultivation-independent approach to detect single clones in drinking water. This approach is based on the extraction of DNA from drinking water followed by PCR using a set of eight VNTR primer pairs necessary for MLVA genotyping of L. pneumophila. The PCR amplicons were analyzed by single-strand conformation polymorphism (SSCP) and capillary electrophoresis to obtain the respective MLVA profiles. Parallel to the high-resolution analysis, we used the same environmental DNA to quantify the number of L. pneumophila cells in drinking water using real-time PCR with 16S rRNA gene-targeted primers. We used a set of drinking water samples from a small-scale drinking water network to test our approach. With these samples we demonstrated that the developed approach was directly applicable to DNA obtained from drinking water. We were able to detect more L. pneumophila MLVA genotypes in drinking water than we could detect by isolation. Our approach could be a valuable tool to identify outbreak strains even after the outbreak has occurred and has the potential to be applied directly to clinical material.
    • Identification of a Thiomicrospira denitrificans-Like Epsilonproteobacterium as a Catalyst for Autotrophic Denitrification in the Central Baltic Sea†

      Brettar, Ingrid; Labrenz, Matthias; Flavier, Sébastien; Bötel, Julia; Kuosa, Harri; Christen, Richard; Höfle, Manfred G. (American Society for Microbiology, 2006-02)
    • Immune modulator adamantylamide dipeptide stimulates efficient major histocompatibility complex class I-restricted responses in mice.

      Becker, Pablo D; Nörder, Miriam; Guzmán, Carlos Alberto; Grinstein, Saul; Helmholtz Centre for infection research, Inhoffenstr. 7, 38124 Braunschweig, Germany. (2007-05)
      Adamantylamide L-alanyl-D-isoglutamine (AdDP) is a synthetic adjuvant which belongs to the family of the desmuramyl peptides. AdDP exerts its adjuvant properties when it is administered either by the parenteral or by the mucosal route, leading to the elicitation of strong humoral responses at both the systemic and the mucosal levels. However, very little is known about the effect of AdDP on cellular immunity. Here we demonstrate that AdDP is able to stimulate cellular responses, which are characterized by the release of gamma interferon by CD8+ T cells when they are restimulated with a major histocompatibility complex class I-restricted peptide and strong in vivo lymphocyte-mediated cytotoxic activity. The capacity of AdDP to stimulate the elicitation of both cellular and humoral adaptive responses makes this adjuvant a promising tool for the development of mucosal vaccine formulations.
    • Immune modulators with defined molecular targets: cornerstone to optimize rational vaccine design.

      Ebensen, Thomas; Guzmán, Carlos A; Department of Vaccinology, Helmholtz Centre for Infection Research, Braunschweig, Germany. (2011-03-02)
      Vaccination remains the most valuable tool for preventing infectious diseases. However, the performance of many existing vaccines should be improved and there are diseases for which vaccines are still not available. The use of well-defined antigens for the generation of subunit vaccines has led to products with an improved safety profile. However, purified antigens are usually poorly immunogenic, making essential the use of adjuvants. Despite the fact that adjuvants have been used to increase the immunogenicity of vaccines for more than 70 years, only a handful has been licensed for human use (e.g., aluminium salts, the micro-fluidized squalene-in-water emulsion MF59 and monophosphoryl lipid A). Thus, the development of new adjuvants which are able to promote broad and sustained immune responses at systemic and mucosal levels still remains as a major challenge in vaccinology. Recent advances in our understanding of the immune system have facilitated the identification of new biological targets for screening programs aimed at the discovery of novel immune stimulators. This resulted in the identification of new candidate adjuvants, which made possible the modulation of the immune responses elicited according to specific needs. A number of promising adjuvants which are currently under preclinical or clinical development will be described in this review.
    • Immune Responses to Pandemic H1N1 Influenza Virus Infection in Pigs Vaccinated with a Conserved Hemagglutinin HA1 Peptide Adjuvanted with CAF01 or CDA/αGalCerMPEG.

      López-Serrano, Sergi; Cordoba, Lorena; Pérez-Maillo, Mónica; Pleguezuelos, Patricia; Remarque, Edmond J; Ebensen, Thomas; Guzmán, Carlos A; Christensen, Dennis; Segalés, Joaquim; Darji, Ayub; et al. (MDPI, 2021-07-06)
      This study aimed to evaluate the immune response and protection correlates against influenza virus (IV) infection in pigs vaccinated with the novel NG34 HA1 vaccine candidate adjuvanted with either CAF®01 or CDA/αGalCerMPEG (αGCM). Two groups of six pigs each were vaccinated intramuscularly twice with either NG34 + CAF®01 or NG34 + CDA/αGCM. As controls, groups of animals (n = 6 or 4) either non-vaccinated or vaccinated with human seasonal trivalent influenza vaccine or NG34 + Freund's adjuvant were included in the study. All animal groups were challenged with the 2009 pandemic (pdm09) strain of H1N1 (total amount of 7 × 106 TCID50/mL) via intranasal and endotracheal routes 21 days after second vaccination. Reduced consolidated lung lesions were observed both on days three and seven post-challenge in the animals vaccinated with NG34 + CAF®01, whereas higher variability with relatively more severe lesions in pigs of the NG34 + CDA/αGCM group on day three post-infection. Among groups, animals vaccinated with NG34 + CDA/αGCM showed higher viral loads in the lung at seven days post infection whereas animals from NG34 + CAF®01 completely abolished virus from the lower respiratory tract. Similarly, higher IFNγ secretion and stronger IgG responses against the NG34 peptide in sera was observed in animals from the NG34 + CAF®01 group as compared to the NG34 + CDA/αGCM. NG34-vaccinated pigs with adjuvanted CAF®01 or CDA/αGCM combinations resulted in different immune responses as well as outcomes in pathology and viral shedding.
    • Immunization with Tc52 or its amino terminal domain adjuvanted with c-di-AMP induces Th17+Th1 specific immune responses and confers protection against Trypanosoma cruzi.

      Matos, Marina N; Cazorla, Silvia I; Schulze, Kai; Ebensen, Thomas; Guzmán, Carlos Alberto; Malchiodi, Emilio L; Helmholtz Centre for infection research, Inhoffenstr. 7, 38124 Braunschweig, Germany. (2017-02)
      The development of new adjuvants enables fine modulation of the elicited immune responses. Ideally, the use of one or more adjuvants should result in the induction of a protective immune response against the specific pathogen. We have evaluated the immune response and protection against Trypanosoma cruzi infection in mice vaccinated with recombinant Tc52 or its N- and C-terminal domains (NTc52 and CTc52) adjuvanted either with the STING (Stimulator of Interferon Genes) agonist cyclic di-AMP (c-di-AMP), a pegylated derivative of α-galactosylceramide (αGC-PEG), or oligodeoxynucleotides containing unmethylated CpG motifs (ODN-CpG). All groups immunized with the recombinant proteins plus adjuvant: Tc52+c-di-AMP, NTc52+c-di-AMP, CTc52+c-di-AMP, NTc52+c-di-AMP+αGC-PEG, NTc52+CpG, developed significantly higher anti-Tc52 IgG titers than controls. Groups immunized with c-di-AMP and Tc52, NTc52 or CTc52 showed the highest Tc52-specific IgA titers in nasal lavages. All groups immunized with the recombinant proteins plus adjuvant developed a strong specific cellular immune response in splenocytes and lymph node cells with significant differences for groups immunized with c-di-AMP and Tc52, NTc52 or CTc52. These groups also showed high levels of Tc52-specific IL-17 and IFN-γ producing cells, while NTc52+CpG group only showed significant difference with control in IFN-γ producing cells. Groups immunized with c-di-AMP and Tc52, NTc52 or CTc52 developed predominantly a Th17 and Th1immune response, whereas for NTc52+CpG it was a dominant Th1 response. It was previously described that αGC-PEG inhibits Th17 differentiation by activating NKT cells. Thus, in this work we have also included a group immunized with both adjuvants (NTc52+c-di-AMP+αGC-PEG) with the aim to modulate the Th17 response induced by c-di-AMP. This group showed a significant reduction in the number of Tc52-specific IL-17 producing splenocytes, as compared to the group NTc52+c-di-AMP, which has in turn correlated with a reduction in protection against infection. These results suggest that the Th17 immune response developed after immunizing with NTc52+c-di-AMP could have a protective role against T. cruzi infection. Groups NTc52+c-di-AMP, Tc52+c-di-AMP and NTc52PB, were the ones that showed better protection against infection with lower parasitemia and weight loss, and higher survival.
    • In vivo gene regulation in Salmonella spp. by a salicylate-dependent control circuit.

      Royo, José Luis; Becker, Pablo Daniel; Camacho, Eva María; Cebolla, Angel; Link, Claudia; Santero, Eduardo; Guzmán, Carlos Alberto; Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide-Consejo Superior de Investigaciones Científicas, Carretera, Utrera, Km 1, E-41013 Sevilla, Spain. (2007-11)
      Systems allowing tightly regulated expression of prokaryotic genes in vivo are important for performing functional studies of bacterial genes in host-pathogen interactions and establishing bacteria-based therapies. We integrated a regulatory control circuit activated by acetyl salicylic acid (ASA) in attenuated Salmonella enterica that carries an expression module with a gene of interest under control of the XylS2-dependent Pm promoter. This resulted in 20-150-fold induction ex vivo. The regulatory circuit was also efficiently induced by ASA when the bacteria resided in eukaryotic cells, both in vitro and in vivo. To validate the circuit, we administered Salmonella spp., carrying an expression module encoding the 5-fluorocytosine-converting enzyme cytosine deaminase in the bacterial chromosome or in a plasmid, to mice with tumors. Induction with ASA before 5-fluorocytosine administration resulted in a significant reduction of tumor growth. These results demonstrate the usefulness of the regulatory control circuit to selectively switch on gene expression during bacterial infection.
    • In vivo Neutralization of Pro-inflammatory Cytokines During Secondary Streptococcus pneumoniae Infection Post Influenza A Virus Infection

      Sharma-Chawla, Niharika; Stegemann-Koniszewski, Sabine; Christen, Henrike; Boehme, Julia D.; Kershaw, Olivia; Schreiber, Jens; Guzmán, Carlos A.; Bruder, Dunja; Hernandez-Vargas, Esteban A.; HZI,Helmholtz-Zentrum für Infektionsforschung GmbH, Inhoffenstr. 7,38124 Braunschweig, Germany. (Frontiers Media SA, 2019-08-14)
      An overt pro-inflammatory immune response is a key factor contributing to lethal pneumococcal infection in an influenza pre-infected host and represents a potential target for therapeutic intervention. However, there is a paucity of knowledge about the level of contribution of individual cytokines. Based on the predictions of our previous mathematical modeling approach, the potential benefit of IFN-γ- and/or IL-6-specific antibody-mediated cytokine neutralization was explored in C57BL/6 mice infected with the influenza A/PR/8/34 strain, which were subsequently infected with the Streptococcus pneumoniae strain TIGR4 on day 7 post influenza. While single IL-6 neutralization had no effect on respiratory bacterial clearance, single IFN-γ neutralization enhanced local bacterial clearance in the lungs. Concomitant neutralization of IFN-γ and IL-6 significantly reduced the degree of pneumonia as well as bacteremia compared to the control group, indicating a positive effect for the host during secondary bacterial infection. The results of our model-driven experimental study reveal that the predicted therapeutic value of IFN-γ and IL-6 neutralization in secondary pneumococcal infection following influenza infection is tightly dependent on the experimental protocol while at the same time paving the way toward the development of effective immune therapies.
    • Induction of CD4(+) and CD8(+) anti-tumor effector T cell responses by bacteria mediated tumor therapy.

      Stern, Christian; Kasnitz, Nadine; Kocijancic, Dino; Trittel, Stephanie; Riese, Peggy; Guzman, Carlos A; Leschner, Sara; Weiss, Siegfried; Helmholtz-Zentrum für Infektionsforschung GmbH, Inhoffenstr. 7, 38124 Braunschweig, Germany. (2015-10-15)
      Facultative anaerobic bacteria like E. coli can colonize solid tumors often resulting in tumor growth retardation or even clearance. Little mechanistic knowledge is available for this phenomenon which is however crucial for optimization and further implementation in the clinic. Here, we show that intravenous injections with E. coli TOP10 can induce clearance of CT26 tumors in BALB/c mice. Importantly, re-challenging mice which had cleared tumors showed that clearance was due to a specific immune reaction. Accordingly, lymphopenic mice never showed tumor clearance after infection. Depletion experiments revealed that during induction phase, CD8(+) T cells are the sole effectors responsible for tumor clearance while in the memory phase CD8(+) and CD4(+) T cells were involved. This was confirmed by adoptive transfer. CD4(+) and CD8(+) T cells could reject newly set tumors while CD8(+) T cells could even reject established tumors. Detailed analysis of adoptively transferred CD4(+) T cells during tumor challenge revealed expression of granzyme B, FasL, TNF-α and IFN-γ in such T cells that might be involved in the anti-tumor activity. Our findings should pave the way for further optimization steps of this promising therapy.
    • Influenza-Activated ILC1s Contribute to Antiviral Immunity Partially Influenced by Differential GITR Expression.

      Vashist, Neha; Trittel, Stephanie; Ebensen, Thomas; Chambers, Benedict J; Guzmán, Carlos A; Riese, Peggy; HZI,Helmholtz-Zentrum für Infektionsforschung GmbH, Inhoffenstr. 7,38124 Braunschweig, Germany. (Frontiers, 2018-01-01)
      Innate lymphoid cells (ILCs) represent diversified subsets of effector cells as well as immune regulators of mucosal immunity and are classified into group 1 ILCs, group 2 ILCs, and group 3 ILCs. Group 1 ILCs encompass natural killer (NK) cells and non-NK ILCs (ILC1s) and mediate their functionality via the rapid production of IFN-γ and TNF-α. The current knowledge of ILC1s mainly associates them to inflammatory processes. Much less is known about their regulation during infection and their capacity to interact with cells of the adaptive immune system. The present study dissected the role of ILC1s during early influenza A virus infection, thereby revealing their impact on the antiviral response. Exploiting in vitro and in vivo H1N1 infection systems, a cross-talk of ILC1s with cells of the innate and the adaptive immunity was demonstrated, which contributes to anti-influenza immunity. A novel association of ILC1 functionality and the expression of the glucocorticoid-induced TNFR-related protein (GITR) was observed, which hints toward a so far undescribed role of GITR in regulating ILC1 responsiveness. Overexpression of GITR inhibits IFN-γ production by ILC1s, whereas partial reduction of GITR expression can reverse this effect, thereby regulating ILC1 functionality. These new insights into ILC1 biology define potential intervention targets to modulate the functional properties of ILC1s, thus contributing toward the development of new immune interventions against influenza.
    • Intramammary application of non-methylated-CpG oligodeoxynucleotides (CpG) inhibits both local and systemic mammary carcinogenesis in female BALB/c Her-2/neu transgenic mice.

      Mastini, Cristina; Becker, Pablo D; Iezzi, Manuela; Curcio, Claudia; Musiani, Piero; Forni, Guido; Cavallo, Federica; Guzmán, Carlos A; Molecular Biotechnology Center, Department of Clinical and Biological Sciences, University of Torino, 10126 Torino, Italy. (2008-05)
      CpG are powerful drugs activating the innate immune system. In this study, the ability of their intramammary administration in impeding the devastating progression of carcinogenesis in all the mammary glands of female BALB/c mice transgenic for the rat neu transforming oncogene was assessed. Starting when in situ carcinomas were scattered over all their mammary glands (week 10), mice received CpG injections in the stroma of the fourth left gland. Local neoplastic progression was inhibited by six monthly administrations. CpG not only delayed the onset of carcinomas in the injected gland, but also hampered their progression. Extended latency was observed for tumors in glands both close to and far from the injection site. When the experiment ended (week 45), no tumors were palpable in 67% of the injected glands and a markedly impaired tumor growth was evident in the others. An impressive local infiltrate of CD11b(+) cells with the morphologic features of macrophages, plasma cells, B220(+) B cells, and CD4(+) and CD8(+) T cells was quickly recruited to the CpG-treated glands. High quantities of IFN-gamma producing cells were only present in the ipsilateral axillary draining lymph nodes of the treated glands. Enhanced natural killer (NK) lytic activity was also detected in the spleens. Inhibition of progression was weaker when only four injections were given, and abolished by in vivo depletion of NK cells. CpG monotherapy is thus effective in an aggressive model of autochthonous cancer. The results strongly support the administration of CpG as a local monotherapy of multiple invasive microscopic lesions.
    • Intranasal vaccination with an adjuvanted polyphosphazenes nanoparticle-based vaccine formulation stimulates protective immune responses in mice.

      Schulze, Kai; Ebensen, Thomas; Babiuk, Lorne A; Gerdts, Volker; Guzman, Carlos A.; Helmholtz-Zentrum für Infektionsforschung GmbH, Inhoffenstr.7, 38124 Braunschweig, Germany. (2017-06-01)
      The most promising strategy to sustainably prevent infectious diseases is vaccination. However, emerging as well as re-emerging diseases still constitute a considerable threat. Furthermore, lack of compliance and logistic constrains often result in the failure of vaccination campaigns. To overcome these hurdles, novel vaccination strategies need to be developed, which fulfill maximal safety requirements, show maximal efficiency and are easy to administer. Mucosal vaccines constitute promising non-invasive approaches able to match these demands. Here we demonstrate that nanoparticle (polyphosphazenes)-based vaccine formulations including c-di-AMP as adjuvant, cationic innate defense regulator peptides (IDR) and ovalbumin (OVA) as model antigen were able to stimulate strong humoral and cellular immune responses, which conferred protection against the OVA expressing influenza strain A/WSN/OVAI (H1N1). The presented results confirm the potency of nanoparticle-based vaccine formulations to deliver antigens across the mucosal barrier, but also demonstrate the necessity to include adjuvants to stimulate efficient antigen-specific immune responses.
    • Intranasal vaccination with recombinant outer membrane protein CD and adamantylamide dipeptide as the mucosal adjuvant enhances pulmonary clearance of Moraxella catarrhalis in an experimental murine model.

      Becker, Pablo D; Bertot, Gustavo M; Souss, David; Ebensen, Thomas; Guzmán, Carlos A; Grinstein, Saúl; Virology Laboratory, Ricardo Gutiérrez Children's Hospital, Gallo 1330, 1425 Buenos Aires, Argentina. (2007-04)
      Moraxella catarrhalis causes acute otitis media in children and lower respiratory tract infections in adults and elderly. In children the presence of antibodies against the highly conserved outer membrane protein CD correlates with protection against infection, suggesting that this protein may be useful as a vaccine antigen. However, native CD is difficult to purify, and it is still unclear if recombinant CD (rCD) is a valid alternative. We performed a side-by-side comparison of the immunogenicities and efficacies of vaccine formulations containing native CD and rCD with adamantylamide dipeptide as the mucosal adjuvant. Intranasal vaccination of mice stimulated the production of high CD-specific antibody titers in sera and of secretory immunoglobulin A in mucosal lavages, which cross-recognized both antigens. While vaccination with native CD increased the number of interleukin-2 (IL-2)- and gamma interferon-producing cells, rCD mainly stimulated IL-4-secreting cells. Nevertheless, efficient bacterial clearance was observed in the lungs of challenged mice receiving native CD and in the lungs of challenged mice receiving rCD (96% and 99%, respectively). Thus, rCD is a promising candidate for incorporation in vaccine formulations for use against M. catarrhalis.
    • Invariant NKT Cell-Mediated Modulation of ILC1s as a Tool for Mucosal Immune Intervention.

      Trittel, Stephanie; Vashist, Neha; Ebensen, Thomas; Chambers, Benedict J; Guzmán, Carlos A; Riese, Peggy; HZI,Helmholtz-Zentrum für Infektionsforschung GmbH, Inhoffenstr. 7,38124 Braunschweig, Germany. (Frontiers, 2019-01-01)
      Non-NK group 1 innate lymphoid cells (ILC1s), mainly investigated in the mucosal areas of the intestine, are well-known to contribute to anti-parasitic and anti-bacterial immune responses. Recently, our group revealed that lung ILC1s become activated during murine influenza infection, thereby contributing to viral clearance. In this context, worldwide seasonal influenza infections often result in severe disease outbreaks leading to high morbidity and mortality. Therefore, new immune interventions are urgently needed. In contrast to NK cells, the potential of non-NK ILC1s to become functionally tailored by immune modulators to contribute to the combat against mucosal-transmitted viral pathogens has not yet been addressed. The present study aimed at assessing the potential of ILC1s to become modulated by iNKT cells activated through the CD1d agonist αGalCerMPEG. Our results demonstrate an improved functional responsiveness of murine lung and splenic ILC1s following iNKT cell stimulation by the mucosal route, as demonstrated by enhanced surface expression of TNF-related apoptosis-inducing ligand (TRAIL), CD49a and CD28, and increased secretion of IFNγ. Interestingly, iNKT cell stimulation also induced the expression of the immune checkpoint molecules GITR and CTLA-4, which represent crucial points of action for immune regulation. An in vivo influenza infection model revealed that intranasal activation of ILC1s by αGalCerMPEG contributed to increased viral clearance as shown by reduced viral loads in the lungs. The findings that ILC1s can become modulated by mucosally activated iNKT cells in a beneficial manner emphasize their up to now underestimated potential and renders them to be considered as targets for novel immune interventions.