• Quantitative reverse transcription polymerase chain reaction analysis of Vibrio cholerae cells entering the viable but non-culturable state and starvation in response to cold shock.

      González-Escalona, Narjol; Fey, Axel; Höfle, Manfred G; Espejo, Romilio T; A Guzmán, Carlos; Vaccine Research Group, Division of Microbiology, GBF-German Research Centre for Biotechnology, Braunschweig, Germany. (2006-04)
      We performed a comparative analysis of the Vibrio cholerae strain El Tor 3083 entering the viable but non-culturable (VBNC) state and starvation after incubation in artificial seawater (ASW) at 4 and 15 degrees C respectively. To this end, we determined bacterial culturability and membrane integrity, as well as the cellular levels of 16S rRNA and mRNA for the tuf, rpoS and relA genes, which were assessed by real-time quantitative reverse transcription polymerase chain reaction (Q-RT-PCR). Bacterial cells entering the VBNC state showed a 154, 5.1 x 10(3), 24- and 23-fold reduction in the number of copies of 16S rRNA and mRNA for tuf, rpoS and relA, in comparison to exponentially growing cells. The differences were less striking between cells in the VBNC and starvation states. The mRNA for relA was selectively increased in VBNC cells (3.2-folds), whereas a 3.9-fold reduction was observed for 16S rRNA. The obtained results confirmed that key activities of the cellular metabolism (i.e. tuf representing protein synthesis, and relA or rpoS stress response) were still detected in bacteria entering the VBNC state and starvation. These data suggest that the new Q-RT-PCR methodology, based on the selected RNA targets, could be successfully exploited for the identification (rRNA) of V. cholerae and assessment of its metabolic activity (tuf, rpoS, relA mRNA) in environmental samples.
    • Rapid In Vivo Assessment of Adjuvant's Cytotoxic T Lymphocytes Generation Capabilities for Vaccine Development

      Lirussi, Darío; Ebensen, Thomas; Schulze, Kai; Reinhard, Elena; Trittel, Stephanie; Riese, Peggy; Prochnow, Blair; Guzmán, Carlos A.; HZI,Helmholtz-Zentrum für Infektionsforschung GmbH, Inhoffenstr. 7,38124 Braunschweig, Germany.
      The assessment of modern sub-unit vaccines reveals that the generation of neutralizing antibodies is important but not sufficient for adjuvant selection. Therefore, adjuvants with both humoral and cellular immuno-stimulatory capabilities that are able to promote cytotoxic T lymphocytes (CTL) responses are urgently needed. Thus, faithful monitoring of adjuvant candidates that induce cross-priming and subsequently enhance CTL generation represents a crucial step in vaccine development. In here we present an application for a method that uses SIINFEKL-specific (OT-I) T cells to monitor the cross-presentation of the model antigen ovalbumin (OVA) in vivo in the presence of different adjuvant candidates. This method represents a rapid test to select adjuvants with the best cross-priming capabilities. The proliferation of CD8+ T cells is the most valuable indication of cross-priming and it is also regarded as a correlate of adjuvant-induced cross-presentation. This feature can be evaluated in different immune organs like lymph nodes and spleen. The extent of the CTL generation can also be monitored, thereby giving insights on the nature of a local (draining lymph node mainly) or a systemic response (distant lymph nodes and/or spleen). This technique further allows multiple modifications for testing drugs that can inhibit specific cross-presentation pathways and also offers the possibility to be used in different strains of conventional and genetically modified mice. In summary, the application that we present here will be useful for vaccine laboratories in industry or academia that develop or modify chemical adjuvants for vaccine research and development. © 2018, Journal of Visualized Experiments.
    • Redirection of the immune response to the functional catalytic domain of the cystein proteinase cruzipain improves protective immunity against Trypanosoma cruzi infection.

      Cazorla, Silvia I; Frank, Fernanda M; Becker, Pablo D; Arnaiz, María; Mirkin, Gerardo A; Corral, Ricardo S; Guzmán, Carlos A; Malchiodi, Emilio L; Cátedra de Inmunología and Instituto de Estudios de la Inmunidad Humoral (IDEHU), Universidad de BuenosAires, 1113 Buenos Aires, Argentina. (2010-07-01)
      Despite the strong immune responses elicited after natural infection with Trypanosoma cruzi or vaccination against it, parasite survival suggests that these responses are insufficient or inherently inadequate. T. cruzi contains a major cystein proteinase, cruzipain, which has a catalytic N-terminal domain and a C-terminal extension. Immunizations that employed recombinant cruzipain or its N- and C-terminal domains allowed evaluation of the ability of cruzipain to circumvent responses against the catalytic domain. This phenomenon is not a property of the parasite but of cruzipain itself, because recombinant cruzipain triggers a response similar to that of cruzipain during natural or experimental infection. Cruzipain is not the only antigen with a highly immunogenic region of unknown function that somehow protects an essential domain for parasite survival. However, our studies show that this can be reverted by using the N-terminal domain as a tailored immunogen able to redirect host responses to provide enhanced protection.
    • Replication-deficient mutant Herpes Simplex Virus-1 targets professional antigen presenting cells and induces efficient CD4+ T helper responses.

      Fiorentini, Simona; Marconi, Peggy; Avolio, Manuela; Marini, Elena; Garrafa, Emirena; Caracciolo, Sonia; Rossi, Daniele; Bozac, Alexandra; Becker, Pablo D; Gentili, Francesca; et al. (2007-07)
      Both neutralizing antibodies and cytotoxic T-cells are necessary to control a viral infection. However, vigorous T helper responses are essential for their elicitation and maintenance. Here we show that a recombinant replication-deficient Herpes Simplex Virus (HSV)-1 vector encoding the Human Immunodeficiency Virus (HIV)-1 matrix protein p17 (T0-p17) was capable of infecting professional antigen presenting cells (APCs) in vitro and in vivo. The injection of T0-p17 in the mouse dermis generated a strong p17-specific CD4+ T helper response preceding both p17-specific humoral and effector T cell responses. Moreover, we show that T0-p17 infection did not interfere with the endogenous processing of the transgene encoded antigen, since infected APCs were able to evoke a strong recall response in vitro. Our results demonstrate that replication-deficient HSV vectors can be appealing candidates for the development of vaccines able to trigger T helper responses.
    • Respiratory Influenza A Virus Infection Triggers Local and Systemic Natural Killer Cell Activation Toll-Like Receptor 7.

      Stegemann-Koniszewski, Sabine; Behrens, Sarah; Boehme, Julia D; Hochnadel, Inga; Riese, Peggy; Guzmán, Carlos A; Kröger, Andrea; Schreiber, Jens; Gunzer, Matthias; Bruder, Dunja; et al. (Frontiers, 2018-02-13)
      The innate immune system senses influenza A virus (IAV) through different pathogen-recognition receptors including Toll-like receptor 7 (TLR7). Downstream of viral recognition natural killer (NK) cells are activated as part of the anti-IAV immune response. Despite the known decisive role of TLR7 for NK cell activation by therapeutic immunostimulatory RNAs, the contribution of TLR7 to the NK cell response following IAV infection has not been addressed. We have analyzed lung cytokine responses as well as the activation, interferon (IFN)-γ production, and cytotoxicity of lung and splenic NK cells following sublethal respiratory IAV infection in wild-type and TLR7ko mice. Early airway IFN-γ levels as well as the induction of lung NK cell CD69 expression and IFN-γ production in response to IAV infection were significantly attenuated in TLR7-deficient hosts. Strikingly, respiratory IAV infection also primed splenic NK cells for IFN-γ production, degranulation, and target cell lysis, all of which were fully dependent on TLR7. At the same time, lung type I IFN levels were significantly reduced in TLR7ko mice early following IAV infection, displaying a potential upstream mechanism of the attenuated NK cell activation observed. Taken together, our data clearly demonstrate a specific role for TLR7 signaling in local and systemic NK cell activation following respiratory IAV infection despite the presence of redundant innate IAV-recognition pathways.
    • The response of Vibrio- and Rhodobacter-related populations of the NW Mediterranean Sea to additions of dissolved organic matter, phages, or dilution.

      Weinbauer, Markus G; Christen, Richard; Höfle, Manfred G (2006-04-01)
      We investigated the growth response of the heterotrophic prokaryotic community focusing on Vibrio- and Rhodobacter-related populations (SRF3) to variation in the availability of dissolved organic matter (DOM), population density-dependent effects, and prokaryotic virus (phage) infection in coastal and offshore waters of the NW Mediterranean Sea. We tested the response of the prokaryotic community to three different DOM fractions prepared by ultrafiltration. One of the DOM fractions contained phages (<0.2 m), a second was virus-free (<100 kDa), and a third contained only low molecular weight (<1 kDa). The proportion of Vibrio and SRF3 populations as determined by fluorescent in situ hybridization in the community ranged from <1 to 6.2% and from 3.2 to 6.3%, respectively. Based on changes in cell numbers, growth rates ranged from 2.1 to 3.1 day(-1) for Vibrio and from 0.8 to 1.2 day(-1) for SRF3. Growth rates of Vibrio were similar or higher than those of the total prokaryotic community, whereas the ability of Vibrio to use high molecular weight (HMW) DOM and the responses to additions of phage-rich material were lower. Growth rates of SRF3 were lower than that of the community. Susceptibility to infection of SRF3 was sometimes lower than in the community, whereas the growth stimulation of HMW DOM was similar or lower. Reducing the cell concentrations of the prokaryotic community by dilution stimulated the overall growth of the community, including that of its constituent Vibrio and SRF3 populations, but the effect was smaller on the SRF3 and greater on Vibrio populations than for the total community. Comparisons with the community also revealed that life strategy traits of bacterial populations differed between coastal and offshore waters. Overall, our data suggest that Vibrio is an r-strategist or opportunistic population in the NW Mediterranean Sea, whereas SRF3 is a K-strategist or equilibrium population.
    • Responsiveness to Influenza Vaccination Correlates with NKG2C-Expression on NK Cells.

      Riese, Peggy; Trittel, Stephanie; Pathirana, Rishi D; Klawonn, Frank; Cox, Rebecca J; Guzmán, Carlos A; HZI,Helmholtz-Zentrum für Infektionsforschung GmbH, Inhoffenstr. 7,38124 Braunschweig, Germany. (MDPI, 2020-06-05)
      Influenza vaccination often results in a large percentage of low responders, especially in high-risk groups. As a first line of defense, natural killer (NK) cells play a crucial role in the fight against infections. However, their implication with regard to vaccine responsiveness is insufficiently assessed. Therefore, this study aimed at the validation of essential NK cell features potentially associated with differential vaccine responsiveness with a special focus on NKG2C- and/or CD57-expressing NK cells considered to harbor memory-like functions. To this end, 16 healthy volunteers were vaccinated with an adjuvanted pandemic influenza vaccine. Vaccine responders and low responders were classified according to their hemagglutination inhibition antibody titers. A majority of responders displayed enhanced frequencies of NKG2C-expressing NK cells 7- or 14-days post-vaccination as compared to low responders, whereas the expression of CD57 was not differentially modulated. The NK cell cytotoxic potential was found to be confined to CD56dimCD16+ NKG2C-expressing NK cells in the responders but not in the low responders, which was further confirmed by stochastic neighbor embedding analysis. The presented study is the first of its kind that ascribes CD56dimCD16+ NKG2C-expressing NK cells a crucial role in biasing adaptive immune responses upon influenza vaccination and suggests NKG2C as a potential biomarker in predicting pandemic influenza vaccine responsiveness.
    • Rheinheimera perlucida sp. nov., a marine bacterium of the Gammaproteobacteria isolated from surface water of the central Baltic Sea.

      Brettar, Ingrid; Christen, Richard; Höfle, Manfred G (2006-09-01)
      A bacterial isolate from the Baltic Sea, BA131(T), was characterized for its physiological and biochemical features, fatty acid profile, G+C content and phylogenetic position based on comparative 16S rRNA gene sequence analysis. The strain was isolated from surface water of the central Baltic Sea during the decay of a plankton bloom. Phylogenetic analyses of the 16S rRNA gene sequence revealed a clear affiliation with the Gammaproteobacteria, and showed closest phylogenetic relationships with the genera Alishewanella and Rheinheimera. The G+C content of the DNA of strain BA131(T) was 48.9 mol%. Cells were non-pigmented, Gram-negative, rod-shaped, motile by means of a single polar flagellum and catalase- and oxidase-positive. Growth was observed at salinities from 0 to 8 %, with an optimum at 1-3 %. Temperature for growth ranged from 4 to 37 degrees C, with an optimum around 25 degrees C. The fatty acids were dominated by 16 : 0 (17-18 %) and by unsaturated compounds (>61 % of the total): 16 : 1omega7c (24-33 %), 17 : 1omega8c (14-18 %) and 18 : 1omega7c (9-12 %). Based on the data presented, BA131(T) is proposed as the type strain of a novel species of the genus Rheinheimera, Rheinheimera perlucida sp. nov. The type strain is BA131(T) (=LMG 23581(T)=CIP 109200(T)).
    • Roads to advanced vaccines: influenza case study.

      Riese, Peggy; Guzmán, Carlos A; Helmholz Zentrum für Infektionsforschung GmbH, Inhoffenstr. 7, 38124 Braunschweig, Germany. (2017-09)
      Vaccines represent a cornerstone to ensure healthy lives and promote well-being for all at all ages. However, there are many diseases for which vaccines are not available, are relatively ineffective or need to be adapted periodically. Advances in microbial biotechnology will contribute to overcoming these roadblocks by laying the groundwork for improving and creating new approaches for developing better vaccines, as illustrated here in the case of influenza.
    • Rodents as pre-clinical models for predicting vaccine performance in humans.

      Riese, Peggy; Trittel, Stephanie; Schulze, Kai; Guzmán, Carlos A (2015-09)
      Vaccines represent a key building block for establishing a successful and sustainable control strategy against infectious diseases. Vaccine development often depends on the availability of correlates for protection and reliable animal models for the screening, selection and prioritization of potential vaccine candidates. This is performed according to their immunogenicity, efficacy and safety profiles in pre-clinical studies, which are also critical for identification of candidate antigens, selection of an optimal delivery system and design of appropriate vaccine formulations. Thus, pre-clinical studies in animal models are a prerequisite for addressing crucial issues and generating a solid pre-clinical package for the approval of clinical trials. This review addresses the strengths, limitations and perspectives of rodents as a vaccine development and pre-clinical validation tool.
    • Role of Autophagy in Von Willebrand Factor Secretion by Endothelial Cells and in the In Vivo Thrombin-Antithrombin Complex Formation Promoted by the HIV-1 Matrix Protein p17.

      Bugatti, Antonella; Marsico, Stefania; Mazzuca, Pietro; Schulze, Kai; Ebensen, Thomas; Giagulli, Cinzia; Peña, Esther; Badimón, Lina; Slevin, Mark; Caruso, Arnaldo; et al. (MDPI, 2020-03-16)
    • A SARS-CoV-2 neutralizing antibody selected from COVID-19 patients binds to the ACE2-RBD interface and is tolerant to most known RBD mutations.

      Bertoglio, Federico; Fühner, Viola; Ruschig, Maximilian; Heine, Philip Alexander; Abassi, Leila; Klünemann, Thomas; Rand, Ulfert; Meier, Doris; Langreder, Nora; Steinke, Stephan; et al. (Cell Press, 2021-07-07)
      The novel betacoronavirus severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2) causes a form of severe pneumonia disease called coronavirus disease 2019 (COVID-19). To develop human neutralizing anti-SARS-CoV-2 antibodies, antibody gene libraries from convalescent COVID-19 patients were constructed and recombinant antibody fragments (scFv) against the receptor-binding domain (RBD) of the spike protein were selected by phage display. The antibody STE90-C11 shows a subnanometer IC50 in a plaque-based live SARS-CoV-2 neutralization assay. The in vivo efficacy of the antibody is demonstrated in the Syrian hamster and in the human angiotensin-converting enzyme 2 (hACE2) mice model. The crystal structure of STE90-C11 Fab in complex with SARS-CoV-2-RBD is solved at 2.0 Å resolution showing that the antibody binds at the same region as ACE2 to RBD. The binding and inhibition of STE90-C11 is not blocked by many known emerging RBD mutations. STE90-C11-derived human IgG1 with FcγR-silenced Fc (COR-101) is undergoing Phase Ib/II clinical trials for the treatment of moderate to severe COVID-19.
    • Seasonal dynamics of bacterial community structure and composition in cold and hot drinking water derived from surface water reservoirs.

      Henne, Karsten; Kahlisch, Leila; Höfle, Manfred G; Brettar, Ingrid; Dept of Vacciology, Helmholtz Centre for infection research, D-38124 Braunschweig, Germany (2014-02-14)
      In temperate regions, seasonal variability of environmental factors affects the bacterial community in source water and finished drinking water. Therefore, the bacterial core community and its seasonal variability in cold and the respective hot drinking water was investigated. The bacterial core community was studied by 16S rRNA-based SSCP fingerprint analyses and band sequencing of DNA and RNA extracts of cold and hot water (60 °C). The bacterial communities of cold and hot drinking water showed a highly different structure and phylogenetic composition both for RNA and DNA extracts. For cold drinking water substantial seasonal dynamics of the bacterial community was observed related to environmental factors such as temperature and precipitation affecting source and drinking water. Phylogenetic analyses of the cold water community indicated that the majority of phylotypes were very closely affiliated with those detected in former studies of the same drinking water supply system (DWSS) in the preceding 6 years, indicating a high stability over time. The hot water community was very stable over time and seasons and highly distinct from the cold water with respect to structure and composition. The hot water community displayed a lower diversity and its phylotypes were mostly affiliated with bacteria of high temperature habitats with high growth rates indicated by their high RNA content. The conversion of the cold to the hot water bacterial community is considered as occurring within a few hours by the following two processes, i) by decay of most of the cold water bacteria due to heating, and ii) rapid growth of the high temperature adapted bacteria present in the hot water (co-heated with the cold water in the same device) using the nutrients released from the decaying cold water bacteria. The high temperature adapted bacteria originated partially from low abundant but beforehand detected members of the cold water; additionally, the rare members ("seed bank ") of the cold water are considered as a source.
    • Self-Amplifying Pestivirus Replicon RNA Encoding Influenza Virus Nucleoprotein and Hemagglutinin Promote Humoral and Cellular Immune Responses in Pigs.

      Démoulins, Thomas; Ruggli, Nicolas; Gerber, Markus; Thomann-Harwood, Lisa J; Ebensen, Thomas; Schulze, Kai; Guzmán, Carlos A; McCullough, Kenneth C; HZI,Helmholtz-Zentrum für Infektionsforschung GmbH, Inhoffenstr. 7,38124 Braunschweig, Germany. (Frontiers, 2021-01-28)
      Self-amplifying replicon RNA (RepRNA) promotes expansion of mRNA templates encoding genes of interest through their replicative nature, thus providing increased antigen payloads. RepRNA derived from the non-cytopathogenic classical swine fever virus (CSFV) targets monocytes and dendritic cells (DCs), potentially promoting prolonged antigen expression in the DCs, contrasting with cytopathogenic RepRNA. We engineered pestivirus RepRNA constructs encoding influenza virus H5N1 (A/chicken/Yamaguchi/7/2004) nucleoprotein (Rep-NP) or hemagglutinin (Rep-HA). The inherent RNase-sensitivity of RepRNA had to be circumvented to ensure efficient delivery to DCs for intracellular release and RepRNA translation; we have reported how only particular synthetic delivery vehicle formulations are appropriate. The question remained concerning RepRNA packaged in virus replicon particles (VRPs); we have now compared an efficient polyethylenimine (PEI)-based formulation (polyplex) with VRP-delivery as well as naked RepRNA co-administered with the potent bis-(3',5')-cyclic dimeric adenosine monophosphate (c-di-AMP) adjuvant. All formulations contained a Rep-HA/Rep-NP mix, to assess the breadth of both humoral and cell-mediated defences against the influenza virus antigens. Assessment employed pigs for their close immunological relationship to humans, and as natural hosts for influenza virus. Animals receiving the VRPs, as well as PEI-delivered RepRNA, displayed strong humoral and cellular responses against both HA and NP, but with VRPs proving to be more efficacious. In contrast, naked RepRNA plus c-di-AMP could induce only low-level immune responses, in one out of five pigs. In conclusion, RepRNA encoding different influenza virus antigens are efficacious for inducing both humoral and cellular immune defences in pigs. Comparisons showed that packaging within VRP remains the most efficacious for delivery leading to induction of immune defences; however, this technology necessitates employment of expensive complementing cell cultures, and VRPs do not target human cells. Therefore, choosing the appropriate synthetic delivery vehicle still offers potential for rapid vaccine design, particularly in the context of the current coronavirus pandemic.
    • Self-Amplifying Replicon RNA Delivery to Dendritic Cells by Cationic Lipids

      Englezou, Pavlos C.; Sapet, Cedric; Démoulins, Thomas; Milona, Panagiota; Ebensen, Thomas; Schulze, Kai; Guzman, Carlos-Alberto; Poulhes, Florent; Zelphati, Olivier; Ruggli, Nicolas; et al.
    • Seropositivity for pathogens associated with chronic infections is a risk factor for all-cause mortality in the elderly: findings from the Memory and Morbidity in Augsburg Elderly (MEMO) Study.

      Zeeb, Marius; Kerrinnes, Tobias; Cicin-Sain, Luka; Guzman, Carlos A; Puppe, Wolfram; Schulz, Thomas F; Peters, Annette; Berger, Klaus; Castell, Stefanie; Karch, André; et al. (Springer, 2020-07-09)
      Immunostimulation by chronic infection has been linked to an increased risk for different non-communicable diseases, which in turn are leading causes of death in high- and middle-income countries. Thus, we investigated if a positive serostatus for pathogens responsible for common chronic infections is individually or synergistically related to reduced overall survival in community dwelling elderly. We used data of 365 individuals from the German MEMO (Memory and Morbidity in Augsburg Elderly) cohort study with a median age of 73 years at baseline and a median follow-up of 14 years. We examined the effect of a positive serostatus at baseline for selected pathogens associated with chronic infections (Helicobacter pylori, Borrelia burgdorferi sensu lato, Toxoplasma gondii, cytomegalovirus, Epstein-Barr virus, herpes simplex virus 1/2, and human herpesvirus 6) on all-cause mortality with multivariable parametric survival models. We found a reduced survival time in individuals with a positive serostatus for Helicobacter pylori (accelerated failure time (AFT) - 15.92, 95% CI - 29.96; - 1.88), cytomegalovirus (AFT - 22.81, 95% CI - 36.41; - 9.22) and Borrelia burgdorferi sensu lato (AFT - 25.25, 95% CI - 43.40; - 7.10), after adjusting for potential confounders. The number of infectious agents an individual was seropositive for had a linear effect on all-cause mortality (AFT per additional infection - 12.42 95% CI - 18.55; - 6.30). Our results suggest an effect of seropositivity for Helicobacter pylori, cytomegalovirus, and Borrelia burgdorferi sensu lato on all-cause mortality in older community dwelling individuals. Further research with larger cohorts and additional biomarkers is required, to assess mediators and molecular pathways of this effect.
    • Signatures of T and B Cell Development, Functional Responses and PD-1 Upregulation After HCMV Latent Infections and Reactivations in Nod.Rag.Gamma Mice Humanized With Cord Blood CD34 Cells.

      Theobald, Sebastian J; Khailaie, Sahamoddin; Meyer-Hermann, Michael; Volk, Valery; Olbrich, Henning; Danisch, Simon; Gerasch, Laura; Schneider, Andreas; Sinzger, Christian; Schaudien, Dirk; et al. (Frontiers, 2018-01-01)
      uman cytomegalovirus (HCMV) latency is typically harmless but reactivation can be largely detrimental to immune compromised hosts. We modeled latency and reactivation using a traceable HCMV laboratory strain expressing the Gaussia luciferase reporter gene (HCMV/GLuc) in order to interrogate the viral modulatory effects on the human adaptive immunity. Humanized mice with long-term (more than 17 weeks) steady human T and B cell immune reconstitutions were infected with HCMV/GLuc and 7 weeks later were further treated with granulocyte-colony stimulating factor (G-CSF) to induce viral reactivations. Whole body bio-luminescence imaging analyses clearly differentiated mice with latent viral infections vs. reactivations. Foci of vigorous viral reactivations were detectable in liver, lymph nodes and salivary glands. The number of viral genome copies in various tissues increased upon reactivations and were detectable in sorted human CD14+, CD169+, and CD34+ cells. Compared with non-infected controls, mice after infections and reactivations showed higher thymopoiesis, systemic expansion of Th, CTL, Treg, and Tfh cells and functional antiviral T cell responses. Latent infections promoted vast development of memory CD4+ T cells while reactivations triggered a shift toward effector T cells expressing PD-1. Further, reactivations prompted a marked development of B cells, maturation of IgG+ plasma cells, and HCMV-specific antibody responses. Multivariate statistical methods were employed using T and B cell immune phenotypic profiles obtained with cells from several tissues of individual mice. The data was used to identify combinations of markers that could predict an HCMV infection vs. reactivation status. In spleen, but not in lymph nodes, higher frequencies of effector CD4+ T cells expressing PD-1 were among the factors most suited to distinguish HCMV reactivations from infections. These results suggest a shift from a T cell dominated immune response during latent infections toward an exhausted T cell phenotype and active humoral immune response upon reactivations. In sum, this novel in vivo humanized model combined with advanced analyses highlights a dynamic system clearly specifying the immunological spatial signatures of HCMV latency and reactivations. These signatures can be merged as predictive biomarker clusters that can be applied in the clinical translation of new therapies for the control of HCMV reactivation.
    • Simultaneous Extraction from Bacterioplankton of Total RNA and DNA Suitable for Quantitative Structure and Function Analyses

      Weinbauer, Markus G.; Fritz, Ingo; Wenderoth, Dirk F.; Höfle, Manfred G. (American Society for Microbiology, 2002-03)
    • An SopB-mediated immune escape mechanism of Salmonella enterica can be subverted to optimize the performance of live attenuated vaccine carrier strains.

      Link, Claudia; Ebensen, Thomas; Ständner, Lothar; Déjosez, Marion; Reinhard, Elena; Rharbaoui, Faiza; Guzmán, Carlos A; Department of Vaccinology, Division of Microbiology, GBF-German Research Centre for Biotechnology, Mascheroder Weg 1, D-38124 Braunschweig, Germany. (2006-07)
      Salmonellae have evolved several mechanisms to evade host clearance. Here, we describe the influence on bacterial immune escape of the effector protein SopB, which is translocated into the cytosol through a type III secretion system. Wild-type bacteria, as well as the sseC and aroA attenuated mutants exerted a stronger cytotoxic effect on dendritic cells (DC) than their SopB-deficient derivatives. Cells infected with the double sseC sopB, phoP sopB and aroA sopB mutants also exhibited higher expression of MHC, CD80, CD86 and CD54 molecules, and showed a stronger capacity to process and present an I-E(d)-restricted epitope from the influenza hemagglutinin (HA) to CD4+ cells from TCR-HA transgenic mice in vitro. The incorporation of an additional mutation into the sopB locus of the attenuated sseC, phoP and aroA mutants resulted in the stimulation of improved humoral and cellular immune responses following oral vaccination. The obtained results define a new potential immune escape strategy of this important pathogen, and also demonstrate that this mechanism can be subverted to optimize the immune responses elicited using Salmonella as a live vaccine carrier.