• Effective intrahepatic CD8+ T-cell immune responses are induced by low but not high numbers of antigen-expressing hepatocytes.

      Ochel, Aaron; Cebula, Marcin; Riehn, Mathias; Hillebrand, Upneet; Lipps, Christoph; Schirmbeck, Reinhold; Hauser, Hansjoerg; Wirth, Dagmar; Helmholtz Centre for infection research, Inhoffenstr. 7, 38124 Braunschweig, Germany. (2016-11)
      Liver infections with hepatotropic viruses, such as hepatitis B virus and hepatitis C virus are accompanied by viral persistence and immune failure. CD8+ T cells are crucial mediators of the intrahepatic antiviral immune response. Chronic infections of the liver and other organs correlate with T-cell exhaustion. It was previously suggested that high antigen load could result in T-cell exhaustion. We aimed at elucidating the impact of different intrahepatic antigen loads on the quality of CD8+ T-cell-mediated immunity by employing an infection-free transgenic mouse model expressing ovalbumin (Ova) as the target antigen. Adoptive transfer of OT-I cells induced a transient intrahepatic immune response toward both high and low Ova levels. However, antigen clearance was achieved only in mice expressing low antigen levels. In contrast, T cells exposed to high antigen levels underwent exhaustion and became depleted, causing antigen persistence. Moreover, when functional T cells were exposed to high intrahepatic antigen levels, a complete transition toward exhaustion was observed. Thus, this study shows that the antigen expression level in the liver correlates inversely with T-cell immunity in vivo and governs the efficiency of immune responses upon antigen presentation.
    • An endothelial cell line infected by Kaposi's sarcoma-associated herpes virus (KSHV) allows the investigation of Kaposi's sarcoma and the validation of novel viral inhibitors in vitro and in vivo.

      Dubich, Tatyana; Lieske, Anna; Santag, Susann; Beauclair, Guillaume; Rückert, Jessica; Herrmann, Jennifer; Gorges, Jan; Büsche, Guntram; Kazmaier, Uli; Hauser, Hansjörg; et al. (2019-01-04)
      Kaposi's sarcoma-associated herpesvirus (KSHV) is the etiological agent of Kaposi's sarcoma (KS), a tumor of endothelial origin predominantly affecting immunosuppressed individuals. Up to date, vaccines and targeted therapies are not available. Screening and identification of anti-viral compounds are compromised by the lack of scalable cell culture systems reflecting properties of virus-transformed cells in patients. Further, the strict specificity of the virus for humans limits the development of in vivo models. In this study, we exploited a conditionally immortalized human endothelial cell line for establishment of in vitro 2D and 3D KSHV latency models and the generation of KS-like xenograft tumors in mice. Importantly, the invasive properties and tumor formation could be completely reverted by purging KSHV from the cells, confirming that tumor formation is dependent on the continued presence of KSHV, rather than being a consequence of irreversible transformation of the infected cells. Upon testing a library of 260 natural metabolites, we selected the compounds that induced viral loss or reduced the invasiveness of infected cells in 2D and 3D endothelial cell culture systems. The efficacy of selected compounds against KSHV-induced tumor formation was verified in the xenograft model. Together, this study shows that the combined use of anti-viral and anti-tumor assays based on the same cell line is predictive for tumor reduction in vivo and therefore allows faithful selection of novel drug candidates against Kaposi's sarcoma. KEY MESSAGES: Novel 2D, 3D, and xenograft mouse models mimic the consequences of KSHV infection. KSHV-induced tumorigenesis can be reverted upon purging the cells from the virus. A 3D invasiveness assay is predictive for tumor reduction in vivo. Chondramid B, epothilone B, and pretubulysin D diminish KS-like lesions in vivo.
    • ER intrabody-mediated inhibition of interferon α secretion by mouse macrophages and dendritic cells.

      Büssow, Konrad; Themann, Philipp; Luu, Sabine; Pentrowski, Paul; Harting, Claudia; Majewski, Mira; Vollmer, Veith; Köster, Mario; Grashoff, Martina; Zawatzky, Rainer; et al. (Plos, 2019-01-01)
      Interferon α (IFNα) counteracts viral infections by activating various IFNα-stimulated genes (ISGs). These genes encode proteins that block viral transport into the host cell and inhibit viral replication, gene transcription and translation. Due to the existence of 14 different, highly homologous isoforms of mouse IFNα, an IFNα knockout mouse has not yet been established by genetic knockout strategies. An scFv intrabody for holding back IFNα isoforms in the endoplasmic reticulum (ER) and thus counteracting IFNα secretion is reported. The intrabody was constructed from the variable domains of the anti-mouse IFNα rat monoclonal antibody 4EA1 recognizing the 5 isoforms IFNα1, IFNα2, IFNα4, IFNα5, IFNα6. A soluble form of the intrabody had a KD of 39 nM to IFNα4. It could be demonstrated that the anti-IFNα intrabody inhibits clearly recombinant IFNα4 secretion by HEK293T cells. In addition, the secretion of IFNα4 was effectively inhibited in stably transfected intrabody expressing RAW 264.7 macrophages and dendritic D1 cells. Colocalization of the intrabody with IFNα4 and the ER marker calnexin in HEK293T cells indicated complex formation of intrabody and IFNα4 inside the ER. Intracellular binding of intrabody and antigen was confirmed by co-immunoprecipitation. Complexes of endogenous IFNα and intrabody could be visualized in the ER of Poly (I:C) stimulated RAW 264.7 macrophages and D1 dendritic cells. Infection of macrophages and dendritic cells with the vesicular stomatitis virus VSV-AV2 is attenuated by IFNα and IFNβ. The intrabody increased virus proliferation in RAW 264.7 macrophages and D1 dendritic cells under IFNβ-neutralizing conditions. To analyze if all IFNα isoforms are recognized by the intrabody was not in the focus of this study. Provided that binding of the intrabody to all isoforms was confirmed, the establishment of transgenic intrabody mice would be promising for studying the function of IFNα during viral infection and autoimmune diseases.
    • Expansion of functional personalized cells with specific transgene combinations.

      Lipps, Christoph; Klein, Franziska; Wahlicht, Tom; Seiffert, Virginia; Butueva, Milada; Zauers, Jeannette; Truschel, Theresa; Luckner, Martin; Köster, Mario; MacLeod, Roderick; et al. (Springer Nature, 2018-03-08)
      Fundamental research and drug development for personalized medicine necessitates cell cultures from defined genetic backgrounds. However, providing sufficient numbers of authentic cells from individuals poses a challenge. Here, we present a new strategy for rapid cell expansion that overcomes current limitations. Using a small gene library, we expanded primary cells from different tissues, donors, and species. Cell-type-specific regimens that allow the reproducible creation of cell lines were identified. In depth characterization of a series of endothelial and hepatocytic cell lines confirmed phenotypic stability and functionality. Applying this technology enables rapid, efficient, and reliable production of unlimited numbers of personalized cells. As such, these cell systems support mechanistic studies, epidemiological research, and tailored drug development.
    • Human monocyte-derived macrophages inhibit HCMV spread independent of classical antiviral cytokines.

      Becker, Jennifer; Kinast, Volker; Döring, Marius; Lipps, Christoph; Duran, Veronica; Spanier, Julia; Tegtmeyer, Pia-Katharina; Wirth, Dagmar; Cicin-Sain, Luka; Alcamí, Antonio; et al. (2018-01-01)
      Infection of healthy individuals with human cytomegalovirus (HCMV) is usually unnoticed and results in life-long latency, whereas HCMV reactivation as well as infection of newborns or immunocompromised patients can cause life-threatening disease. To better understand HCMV pathogenesis we studied mechanisms that restrict HCMV spread. We discovered that HCMV-infected cells can directly trigger plasmacytoid dendritic cells (pDC) to mount antiviral type I interferon (IFN-I) responses, even in the absence of cell-free virus. In contrast, monocyte-derived cells only expressed IFN-I when stimulated by cell-free HCMV, or upon encounter of HCMV-infected cells that already produced cell-free virus. Nevertheless, also in the absence of cell-free virus, i.e., upon co-culture of infected epithelial/endothelial cells and monocyte-derived macrophages (moMΦ) or dendritic cells (moDC), antiviral responses were induced that limited HCMV spread. The induction of this antiviral effect was dependent on cell-cell contact, whereas cell-free supernatants from co-culture experiments also inhibited virus spread, implying that soluble factors were critically needed. Interestingly, the antiviral effect was independent of IFN-γ, TNF-α, and IFN-I as indicated by cytokine inhibition experiments using neutralizing antibodies or the vaccinia virus-derived soluble IFN-I binding protein B18R, which traps human IFN-α and IFN-β. In conclusion, our results indicate that human macrophages and dendritic cells can limit HCMV spread by IFN-I dependent as well as independent mechanisms, whereas the latter ones might be particularly relevant for the restriction of HCMV transmission via cell-to-cell spread.
    • Identification of a Predominantly Interferon-λ-Induced Transcriptional Profile in Murine Intestinal Epithelial Cells.

      Selvakumar, Tharini A; Bhushal, Sudeep; Kalinke, Ulrich; Wirth, Dagmar; Hauser, Hansjörg; Köster, Mario; Hornef, Mathias W; Helmholtz-Zentrum für Infektionsforschung GmbH, Inhoffenstr. 7, 38124 Braunschweig, Germany. (2017-01-01)
      Type I (α and β) and type III (λ) interferons (IFNs) induce the expression of a large set of antiviral effector molecules
    • Identification of molecular sub-networks associated with cell survival in a chronically SIVmac-infected human CD4+ T cell line.

      He, Feng Q; Sauermann, Ulrike; Beer, Christiane; Winkelmann, Silke; Yu, Zheng; Sopper, Sieghart; Zeng, An-Ping; Wirth, Manfred (2014)
      The deciphering of cellular networks to determine susceptibility to infection by HIV or the related simian immunodeficiency virus (SIV) is a major challenge in infection biology.
    • Improved Functionality of Exhausted Intrahepatic CXCR5+ CD8+ T Cells Contributes to Chronic Antigen Clearance Upon Immunomodulation.

      Kumashie, Kingsley Gideon; Cebula, Marcin; Hagedorn, Claudia; Kreppel, Florian; Pils, Marina C; Koch-Nolte, Friedrich; Rissiek, Björn; Wirth, Dagmar; HZI,Helmholtz-Zentrum für Infektionsforschung GmbH, Inhoffenstr. 7,38124 Braunschweig, Germany. (Frontiers, 2021-02-03)
      Chronic hepatotropic viral infections are characterized by exhausted CD8+ T cells in the presence of cognate antigen in the liver. The impairment of T cell response limits the control of chronic hepatotropic viruses. Immune-modulatory strategies are attractive options to re-invigorate exhausted T cells. However, in hepatotropic viral infections, the knowledge about immune-modulatory effects on the in-situ regulation of exhausted intrahepatic CD8+ T cells is limited. In this study, we elucidated the functional heterogeneity in the pool of exhausted CD8+ T cells in the liver of mice expressing the model antigen Ova in a fraction of hepatocytes. We found a subpopulation of intrahepatic CXCR5+ Ova-specific CD8+ T cells, which are profoundly cytotoxic, exhibiting efficient metabolic functions as well as improved memory recall and self-maintenance. The intrahepatic Ova-specific CXCR5+ CD8+ T cells are possibly tissue resident cells, which may rely largely on OXPHOS and glycolysis to fuel their cellular processes. Importantly, host conditioning with CpG oligonucleotide reinvigorates and promotes exhausted T cell expansion, facilitating complete antigen eradication. The CpG oligonucleotide-mediated reinvigoration may support resident memory T cell formation and the maintenance of CXCR5+ Ova-specific CD8+ T cells in the liver. These findings suggest that CpG oligodinucleotide may preferentially target CXCR5+ CD8+ T cells for expansion to facilitate the revival of exhausted T cells. Thus, therapeutic strategies aiming to expand CXCR5+ CD8+ T cells might provide a novel approach against chronic liver infection.
    • An Inducible Transgenic Mouse Model for Immune Mediated Hepatitis Showing Clearance of Antigen Expressing Hepatocytes by CD8+ T Cells.

      Cebula, Marcin; Ochel, Aaron; Hillebrand, Upneet; Pils, Marina C; Schirmbeck, Reinhold; Hauser, Hansjörg; Wirth, Dagmar; Model Systems for Infection and Immunity, Helmholtz Centre for Infection Research, Braunschweig, Germany. (2013)
      The liver has the ability to prime immune responses against neo antigens provided upon infections. However, T cell immunity in liver is uniquely modulated by the complex tolerogenic property of this organ that has to also cope with foreign agents such as endotoxins or food antigens. In this respect, the nature of intrahepatic T cell responses remains to be fully characterized. To gain deeper insight into the mechanisms that regulate the CD8+ T cell responses in the liver, we established a novel OVA_X_CreER(T2) mouse model. Upon tamoxifen administration OVA antigen expression is observed in a fraction of hepatocytes, resulting in a mosaic expression pattern. To elucidate the cross-talk of CD8+ T cells with antigen-expressing hepatocytes, we adoptively transferred K(b)/OVA257-264-specific OT-I T cells to OVA_X_CreER(T2) mice or generated triple transgenic OVA_X CreER(T2)_X_OT-I mice. OT-I T cells become activated in OVA_X_CreER(T2) mice and induce an acute and transient hepatitis accompanied by liver damage. In OVA_X_CreER(T2)_X_OT-I mice, OVA induction triggers an OT-I T cell mediated, fulminant hepatitis resulting in 50% mortality. Surviving mice manifest a long lasting hepatitis, and recover after 9 weeks. In these experimental settings, recovery from hepatitis correlates with a complete loss of OVA expression indicating efficient clearance of the antigen-expressing hepatocytes. Moreover, a relapse of hepatitis can be induced upon re-induction of cured OVA_X_CreER(T2)_X_OT-I mice indicating absence of tolerogenic mechanisms. This pathogen-free, conditional mouse model has the advantage of tamoxifen inducible tissue specific antigen expression that reflects the heterogeneity of viral antigen expression and enables the study of intrahepatic immune responses to both de novo and persistent antigen. It allows following the course of intrahepatic immune responses: initiation, the acute phase and antigen clearance.
    • Innate signalling molecules as genetic adjuvants do not alter the efficacy of a DNA-based influenza A vaccine.

      Lapuente, Dennis; Stab, Viktoria; Storcksdieck Genannt Bonsmann, Michael; Maaske, Andre; Köster, Mario; Xiao, Han; Ehrhardt, Christina; Tenbusch, Matthias; HZI, Helmholtz Zentrum für Infektionsforschung, GmbH, Inhoffenstr. 7, 38124 Braunschweig, Germany. (PLOS, 2020-04-03)
      In respect to the heterogeneity among influenza A virus strains and the shortcomings of current vaccination programs, there is a huge interest in the development of alternative vaccines that provide a broader and more long-lasting protection. Gene-based approaches are considered as promising candidates for such flu vaccines. In our study, innate signalling molecules from the RIG-I and the NALP3 pathways were evaluated as genetic adjuvants in intramuscular DNA immunizations. Plasmids encoding a constitutive active form of RIG-I (cRIG-I), IPS-1, IL-1β, or IL-18 were co-administered with plasmids encoding the hemagglutinin and nucleoprotein derived from H1N1/Puerto Rico/8/1934 via electroporation in BALB/c mice. Immunogenicity was analysed in detail and efficacy was demonstrated in homologous and heterologous influenza challenge experiments. Although the biological activities of the adjuvants have been confirmed by in vitro reporter assays, their single or combined inclusion in the vaccine did not result in superior vaccine efficacy. With the exception of significantly increased levels of antigen-specific IgG1 after the co-administration of IL-1β, there were only minor alterations concerning the immunogenicity. Since DNA electroporation alone induced substantial inflammation at the injection site, as demonstrated in this study using Mx2-Luc reporter mice, it might override the adjuvants´ contribution to the inflammatory microenvironment and thereby minimizes the influence on the immunogenicity. Taken together, the DNA immunization was protective against subsequent challenge infections but could not be further improved by the genetic adjuvants analysed in this study.
    • Isolation of F. novicida-Containing Phagosome from Infected Human Monocyte Derived Macrophages.

      Marecic, Valentina; Shevchuk, Olga; Ozanic, Mateja; Mihelcic, Mirna; Steinert, Michael; Jurak Begonja, Antonija; Abu Kwaik, Yousef; Santic, Marina; Helmholtz Centre for infection research, Inhoffenstr. 7, 38124 Braunschweig, Germany. (2017)
      Francisella is a gram-negative bacterial pathogen, which causes tularemia in humans and animals. A crucial step of Francisella infection is its invasion of macrophage cells. Biogenesis of the Francisella-containing phagosome (FCP) is arrested for ~15 min at the endosomal stage, followed by gradual bacterial escape into the cytosol, where the microbe proliferates. The crucial step in pathogenesis of tularemia is short and transient presence of the bacterium within phagosome. Isolation of FCPs for further studies has been challenging due to the short period of time of bacterial residence in it and the characteristics of the FCP. Here, we will for the first time present the method for isolation of the FCPs from infected human monocytes-derived macrophages (hMDMs). For elimination of lysosomal compartment these organelles were pre-loaded with dextran coated colloidal iron particles prior infection and eliminated by magnetic separation of the post-nuclear supernatant (PNS). We encountered the challenge that mitochondria has similar density to the FCP. To separate the FCP in the PNS from mitochondria, we utilized iodophenylnitrophenyltetrazolium, which is converted by the mitochondrial succinate dehydrogenase into formazan, leading to increased density of the mitochondria and allowing separation by the discontinuous sucrose density gradient ultracentrifugation. The purity of the FCP preparation and its acquisition of early endosomal markers was confirmed by Western blots, confocal and transmission electron microscopy. Our strategy to isolate highly pure FCPs from macrophages should facilitate studies on the FCP and its biogenesis.
    • Lentivirus production is influenced by SV40 large T-antigen and chromosomal integration of the vector in HEK293 cells.

      Gama-Norton, Leonor; Botezatu, Lacramioara; Herrmann, Sabrina; Schweizer, Matthias; Alves, Paula Marques; Hauser, Hansjoerg; Wirth, Dagmar; Helmholtz Centre for Infection Research, Braunschweig, Germany . (2011-10)
      Currently, lentiviral vectors for research and gene therapy are produced from 293-T cells that are transiently transfected with plasmids encoding the vector and helper functions. However, transiently transfected vectors as well as the presence of SV40 virus large T-antigen (T-Ag) cause serious technical and safety considerations. We aimed to exploit single copy integration sites in the HEK293 genome supporting lentiviral vector production. We found that lentiviral vectors result in minimal infectious particle production from single copy integrants in HEK293. Moreover, once this cell line harbors single copy integrations of lentiviral vectors, its ability to transiently produce lentiviral vectors becomes strongly impaired. T-Ag has a dramatic effect on virus production. Low levels of constitutive T-Ag expression can overcome the production restriction imposed by integrated lentiviral vectors copies. Interestingly, T-Ag does not exert its role at the level of transcriptional activity of the vector; rather, it seems to impose an indirect effect on the cell thereby enabling lentiviral vector production. Altogether, our study highlights the restrictions for integrated lentiviral vectors that are relevant for the establishment of stable and safe producer cell lines.
    • Lung macrophage scavenger receptor SR-A6 (MARCO) is an adenovirus type-specific virus entry receptor.

      Stichling, Nicole; Suomalainen, Maarit; Flatt, Justin W; Schmid, Markus; Pacesa, Martin; Hemmi, Silvio; Jungraithmayr, Wolfgang; Maler, Mareike D; Freudenberg, Marina A; Plückthun, Andreas; et al. (2018-03)
      Macrophages are a diverse group of phagocytic cells acting in host protection against stress, injury, and pathogens. Here, we show that the scavenger receptor SR-A6 is an entry receptor for human adenoviruses in murine alveolar macrophage-like MPI cells, and important for production of type I interferon. Scavenger receptors contribute to the clearance of endogenous proteins, lipoproteins and pathogens. Knockout of SR-A6 in MPI cells, anti-SR-A6 antibody or the soluble extracellular SR-A6 domain reduced adenovirus type-C5 (HAdV-C5) binding and transduction. Expression of murine SR-A6, and to a lower extent human SR-A6 boosted virion binding to human cells and transduction. Virion clustering by soluble SR-A6 and proximity localization with SR-A6 on MPI cells suggested direct adenovirus interaction with SR-A6. Deletion of the negatively charged hypervariable region 1 (HVR1) of hexon reduced HAdV-C5 binding and transduction, implying that the viral ligand for SR-A6 is hexon. SR-A6 facilitated macrophage entry of HAdV-B35 and HAdV-D26, two important vectors for transduction of hematopoietic cells and human vaccination. The study highlights the importance of scavenger receptors in innate immunity against human viruses.
    • Macrophage entrapped silica coated superparamagnetic iron oxide particles for controlled drug release in a 3D cancer model.

      Ullah, Sami; Seidel, Katja; Türkkan, Sibel; Warwas, Dawid Peter; Dubich, Tatyana; Rohde, Manfred; Hauser, Hansjörg; Behrens, Peter; Kirschning, Andreas; Köster, Mario; et al. (2018-12-23)
      Targeted delivery of drugs is a major challenge in treatment of diverse diseases. Systemically administered drugs demand high doses and are accompanied by poor selectivity and side effects on non-target cells. Here, we introduce a new principle for targeted drug delivery. It is based on macrophages as transporters for nanoparticle-coupled drugs as well as controlled release of drugs by hyperthermia mediated disruption of the cargo cells and simultaneous deliberation of nanoparticle-linked drugs. Hyperthermia is induced by an alternating electromagnetic field (AMF) that induces heat from silica-coated superparamagnetic iron oxide nanoparticles (SPIONs). We show proof-of-principle of controlled release by the simultaneous disruption of the cargo cells and the controlled, AMF induced release of a toxin, which was covalently linked to silica-coated SPIONs via a thermo-sensitive linker. Cells that had not been loaded with SPIONs remain unaffected. Moreover, in a 3D co-culture model we demonstrate specific killing of associated tumour cells when employing a ratio as low as 1:40 (SPION-loaded macrophage: tumour cells). Overall, our results demonstrate that AMF induced drug release from macrophage-entrapped nanoparticles is tightly controlled and may be an attractive novel strategy for targeted drug release.
    • A mathematical model of the impact of insulin secretion dynamics on selective hepatic insulin resistance.

      Zhao, Gang; Wirth, Dagmar; Schmitz, Ingo; Meyer-Hermann, Michael; Braunschweiger Zentrum für Systembiologie, Rebenring 56, 38106, Germany. (2017-11-08)
      Physiological insulin secretion exhibits various temporal patterns, the dysregulation of which is involved in diabetes development. We analyzed the impact of first-phase and pulsatile insulin release on glucose and lipid control with various hepatic insulin signaling networks. The mathematical model suggests that atypical protein kinase C (aPKC) undergoes a bistable switch-on and switch-off, under the control of insulin receptor substrate 2 (IRS2). The activation of IRS1 and IRS2 is temporally separated due to the inhibition of IRS1 by aPKC. The model further shows that the timing of aPKC switch-off is delayed by reduced first-phase insulin and reduced amplitude of insulin pulses. Based on these findings, we propose a sequential model of postprandial hepatic control of glucose and lipid by insulin, according to which delayed aPKC switch-off contributes to selective hepatic insulin resistance, which is a long-standing paradox in the field.
    • Memory CD8 T cells support the maintenance of hematopoietic stem cells in the bone marrow

      Geerman, Sulima; Brasser, Giso; Bhushal, Sudeep; Salerno, Fiamma; Kragten, Natasja A.; Hoogenboezem, Mark; de Haan, Gerald; Wolkers, Monika C.; Pascutti, María Fernanda; Nolte, Martijn A.; et al.
    • Model-based analysis of influenza A virus replication in genetically engineered cell lines elucidates the impact of host cell factors on key kinetic parameters of virus growth.

      Laske, Tanja; Bachmann, Mandy; Dostert, Melanie; Karlas, Alexander; Wirth, Dagmar; Frensing, Timo; Meyer, Thomas F; Hauser, Hansjörg; Reichl, Udo; HZI,Helmholtz-Zentrum für Infektionsforschung GmbH, Inhoffenstr. 7,38124 Braunschweig, Germany. (PLOS, 2019-01-01)
      The best measure to limit spread of contagious diseases caused by influenza A viruses (IAVs) is annual vaccination. The growing global demand for low-cost vaccines requires the establishment of high-yield production processes. One possible option to address this challenge is the engineering of novel vaccine producer cell lines by manipulating gene expression of host cell factors relevant for virus replication. To support detailed characterization of engineered cell lines, we fitted an ordinary differential equation (ODE)-based model of intracellular IAV replication previously established by our group to experimental data obtained from infection studies in human A549 cells. Model predictions indicate that steps of viral RNA synthesis, their regulation and particle assembly and virus budding are promising targets for cell line engineering. The importance of these steps was confirmed in four of five single gene overexpression cell lines (SGOs) that showed small, but reproducible changes in early dynamics of RNA synthesis and virus release. Model-based analysis suggests, however, that overexpression of the selected host cell factors negatively influences specific RNA synthesis rates. Still, virus yield was rescued by an increase in the virus release rate. Based on parameter estimations obtained for SGOs, we predicted that there is a potential benefit associated with overexpressing multiple host cell genes in one cell line, which was validated experimentally. Overall, this model-based study on IAV replication in engineered cell lines provides a step forward in the dynamic and quantitative characterization of IAV-host cell interactions. Furthermore, it suggests targets for gene editing and indicates that overexpression of multiple host cell factors may be beneficial for the design of novel producer cell lines.
    • p120 Catenin-Mediated Stabilization of E-Cadherin Is Essential for Primitive Endoderm Specification.

      Pieters, Tim; Goossens, Steven; Haenebalcke, Lieven; Andries, Vanessa; Stryjewska, Agata; De Rycke, Riet; Lemeire, Kelly; Hochepied, Tino; Huylebroeck, Danny; Berx, Geert; et al. (2016-08)
      E-cadherin-mediated cell-cell adhesion is critical for naive pluripotency of cultured mouse embryonic stem cells (mESCs). E-cadherin-depleted mESC fail to downregulate their pluripotency program and are unable to initiate lineage commitment. To further explore the roles of cell adhesion molecules during mESC differentiation, we focused on p120 catenin (p120ctn). Although one key function of p120ctn is to stabilize and regulate cadherin-mediated cell-cell adhesion, it has many additional functions, including regulation of transcription and Rho GTPase activity. Here, we investigated the role of mouse p120ctn in early embryogenesis, mESC pluripotency and early fate determination. In contrast to the E-cadherin-null phenotype, p120ctn-null mESCs remained pluripotent, but their in vitro differentiation was incomplete. In particular, they failed to form cystic embryoid bodies and showed defects in primitive endoderm formation. To pinpoint the underlying mechanism, we undertook a structure-function approach. Rescue of p120ctn-null mESCs with different p120ctn wild-type and mutant expression constructs revealed that the long N-terminal domain of p120ctn and its regulatory domain for RhoA were dispensable, whereas its armadillo domain and interaction with E-cadherin were crucial for primitive endoderm formation. We conclude that p120ctn is not only an adaptor and regulator of E-cadherin, but is also indispensable for proper lineage commitment.
    • Periostin secreted by mesenchymal stem cells supports tendon formation in an ectopic mouse model.

      Noack, Sandra; Seiffart, Virginia; Willbold, Elmar; Laggies, Sandra; Winkel, Andreas; Shahab-Osterloh, Sandra; Flörkemeier, Thilo; Hertwig, Falk; Steinhoff, Christine; Nuber, Ulrike A; et al. (2014-08-15)
      True tendon regeneration in human patients remains a vision of musculoskeletal therapies. In comparison to other mesenchymal lineages the biology of tenogenic differentiation is barely understood. Specifically, easy and efficient protocols are lacking that might enable tendon cell and tissue differentiation based on adult (stem) cell sources. In the murine mesenchymal progenitor cell line C3H10T½, overexpression of the growth factor bone morphogenetic protein 2 (BMP2) and a constitutively active transcription factor, Smad8 L+MH2, mediates tendon cell differentiation in vitro and the formation of tendon-like tissue in vivo. We hypothesized that during this differentiation secreted factors involved in extracellular matrix formation exert a major impact on tendon development. Gene expression analyses revealed four genes encoding secreted factors that are notably upregulated: periostin, C-type lectin domain family 3 (member b), RNase A4, and follistatin-like 1. These factors have not previously been implicated in tendon biology. Among these, periostin showed a specific expression in tenocytes of adult mouse Achilles tendon and in chondrocytes within the nonmineralized fibrocartilage zone of the enthesis with the calcaneus. Overexpression of periostin alone or in combination with constitutively active BMP receptor type in human mesenchymal stem cells and subsequent implantation into ectopic sites in mice demonstrated a reproducible moderate tenogenic capacity that has not been described before. Therefore, periostin may belong to the factors contributing to the development of tenogenic tissue.
    • The Role of Regulatory CD4 T Cells in Maintaining Tolerance in a Mouse Model of Autoimmune Hepatitis.

      An Haack, Ira; Derkow, Katja; Riehn, Mathias; Rentinck, Marc-Nicolas; Kühl, Anja A; Lehnardt, Seija; Schott, Eckart; Dept. of Hepatology and Gastroenterology, Charité Universitätsmedizin Berlin, Berlin, Germany. (2015)
      The role of regulatory CD4 T cells (Treg) in immune-mediated liver disease is still under debate. It remains disputed whether Treg suppress T cell-mediated hepatitis in vivo and whether hepatic regulatory T cells are functional in patients with autoimmune hepatitis.