• Macrophage entrapped silica coated superparamagnetic iron oxide particles for controlled drug release in a 3D cancer model.

      Ullah, Sami; Seidel, Katja; Türkkan, Sibel; Warwas, Dawid Peter; Dubich, Tatyana; Rohde, Manfred; Hauser, Hansjörg; Behrens, Peter; Kirschning, Andreas; Köster, Mario; et al. (2018-12-23)
      Targeted delivery of drugs is a major challenge in treatment of diverse diseases. Systemically administered drugs demand high doses and are accompanied by poor selectivity and side effects on non-target cells. Here, we introduce a new principle for targeted drug delivery. It is based on macrophages as transporters for nanoparticle-coupled drugs as well as controlled release of drugs by hyperthermia mediated disruption of the cargo cells and simultaneous deliberation of nanoparticle-linked drugs. Hyperthermia is induced by an alternating electromagnetic field (AMF) that induces heat from silica-coated superparamagnetic iron oxide nanoparticles (SPIONs). We show proof-of-principle of controlled release by the simultaneous disruption of the cargo cells and the controlled, AMF induced release of a toxin, which was covalently linked to silica-coated SPIONs via a thermo-sensitive linker. Cells that had not been loaded with SPIONs remain unaffected. Moreover, in a 3D co-culture model we demonstrate specific killing of associated tumour cells when employing a ratio as low as 1:40 (SPION-loaded macrophage: tumour cells). Overall, our results demonstrate that AMF induced drug release from macrophage-entrapped nanoparticles is tightly controlled and may be an attractive novel strategy for targeted drug release.
    • A mathematical model of the impact of insulin secretion dynamics on selective hepatic insulin resistance.

      Zhao, Gang; Wirth, Dagmar; Schmitz, Ingo; Meyer-Hermann, Michael; Braunschweiger Zentrum für Systembiologie, Rebenring 56, 38106, Germany. (2017-11-08)
      Physiological insulin secretion exhibits various temporal patterns, the dysregulation of which is involved in diabetes development. We analyzed the impact of first-phase and pulsatile insulin release on glucose and lipid control with various hepatic insulin signaling networks. The mathematical model suggests that atypical protein kinase C (aPKC) undergoes a bistable switch-on and switch-off, under the control of insulin receptor substrate 2 (IRS2). The activation of IRS1 and IRS2 is temporally separated due to the inhibition of IRS1 by aPKC. The model further shows that the timing of aPKC switch-off is delayed by reduced first-phase insulin and reduced amplitude of insulin pulses. Based on these findings, we propose a sequential model of postprandial hepatic control of glucose and lipid by insulin, according to which delayed aPKC switch-off contributes to selective hepatic insulin resistance, which is a long-standing paradox in the field.
    • Memory CD8 T cells support the maintenance of hematopoietic stem cells in the bone marrow

      Geerman, Sulima; Brasser, Giso; Bhushal, Sudeep; Salerno, Fiamma; Kragten, Natasja A.; Hoogenboezem, Mark; de Haan, Gerald; Wolkers, Monika C.; Pascutti, María Fernanda; Nolte, Martijn A.; et al.
    • Model-based analysis of influenza A virus replication in genetically engineered cell lines elucidates the impact of host cell factors on key kinetic parameters of virus growth.

      Laske, Tanja; Bachmann, Mandy; Dostert, Melanie; Karlas, Alexander; Wirth, Dagmar; Frensing, Timo; Meyer, Thomas F; Hauser, Hansjörg; Reichl, Udo; HZI,Helmholtz-Zentrum für Infektionsforschung GmbH, Inhoffenstr. 7,38124 Braunschweig, Germany. (PLOS, 2019-01-01)
      The best measure to limit spread of contagious diseases caused by influenza A viruses (IAVs) is annual vaccination. The growing global demand for low-cost vaccines requires the establishment of high-yield production processes. One possible option to address this challenge is the engineering of novel vaccine producer cell lines by manipulating gene expression of host cell factors relevant for virus replication. To support detailed characterization of engineered cell lines, we fitted an ordinary differential equation (ODE)-based model of intracellular IAV replication previously established by our group to experimental data obtained from infection studies in human A549 cells. Model predictions indicate that steps of viral RNA synthesis, their regulation and particle assembly and virus budding are promising targets for cell line engineering. The importance of these steps was confirmed in four of five single gene overexpression cell lines (SGOs) that showed small, but reproducible changes in early dynamics of RNA synthesis and virus release. Model-based analysis suggests, however, that overexpression of the selected host cell factors negatively influences specific RNA synthesis rates. Still, virus yield was rescued by an increase in the virus release rate. Based on parameter estimations obtained for SGOs, we predicted that there is a potential benefit associated with overexpressing multiple host cell genes in one cell line, which was validated experimentally. Overall, this model-based study on IAV replication in engineered cell lines provides a step forward in the dynamic and quantitative characterization of IAV-host cell interactions. Furthermore, it suggests targets for gene editing and indicates that overexpression of multiple host cell factors may be beneficial for the design of novel producer cell lines.
    • p120 Catenin-Mediated Stabilization of E-Cadherin Is Essential for Primitive Endoderm Specification.

      Pieters, Tim; Goossens, Steven; Haenebalcke, Lieven; Andries, Vanessa; Stryjewska, Agata; De Rycke, Riet; Lemeire, Kelly; Hochepied, Tino; Huylebroeck, Danny; Berx, Geert; et al. (2016-08)
      E-cadherin-mediated cell-cell adhesion is critical for naive pluripotency of cultured mouse embryonic stem cells (mESCs). E-cadherin-depleted mESC fail to downregulate their pluripotency program and are unable to initiate lineage commitment. To further explore the roles of cell adhesion molecules during mESC differentiation, we focused on p120 catenin (p120ctn). Although one key function of p120ctn is to stabilize and regulate cadherin-mediated cell-cell adhesion, it has many additional functions, including regulation of transcription and Rho GTPase activity. Here, we investigated the role of mouse p120ctn in early embryogenesis, mESC pluripotency and early fate determination. In contrast to the E-cadherin-null phenotype, p120ctn-null mESCs remained pluripotent, but their in vitro differentiation was incomplete. In particular, they failed to form cystic embryoid bodies and showed defects in primitive endoderm formation. To pinpoint the underlying mechanism, we undertook a structure-function approach. Rescue of p120ctn-null mESCs with different p120ctn wild-type and mutant expression constructs revealed that the long N-terminal domain of p120ctn and its regulatory domain for RhoA were dispensable, whereas its armadillo domain and interaction with E-cadherin were crucial for primitive endoderm formation. We conclude that p120ctn is not only an adaptor and regulator of E-cadherin, but is also indispensable for proper lineage commitment.
    • Periostin secreted by mesenchymal stem cells supports tendon formation in an ectopic mouse model.

      Noack, Sandra; Seiffart, Virginia; Willbold, Elmar; Laggies, Sandra; Winkel, Andreas; Shahab-Osterloh, Sandra; Flörkemeier, Thilo; Hertwig, Falk; Steinhoff, Christine; Nuber, Ulrike A; et al. (2014-08-15)
      True tendon regeneration in human patients remains a vision of musculoskeletal therapies. In comparison to other mesenchymal lineages the biology of tenogenic differentiation is barely understood. Specifically, easy and efficient protocols are lacking that might enable tendon cell and tissue differentiation based on adult (stem) cell sources. In the murine mesenchymal progenitor cell line C3H10T½, overexpression of the growth factor bone morphogenetic protein 2 (BMP2) and a constitutively active transcription factor, Smad8 L+MH2, mediates tendon cell differentiation in vitro and the formation of tendon-like tissue in vivo. We hypothesized that during this differentiation secreted factors involved in extracellular matrix formation exert a major impact on tendon development. Gene expression analyses revealed four genes encoding secreted factors that are notably upregulated: periostin, C-type lectin domain family 3 (member b), RNase A4, and follistatin-like 1. These factors have not previously been implicated in tendon biology. Among these, periostin showed a specific expression in tenocytes of adult mouse Achilles tendon and in chondrocytes within the nonmineralized fibrocartilage zone of the enthesis with the calcaneus. Overexpression of periostin alone or in combination with constitutively active BMP receptor type in human mesenchymal stem cells and subsequent implantation into ectopic sites in mice demonstrated a reproducible moderate tenogenic capacity that has not been described before. Therefore, periostin may belong to the factors contributing to the development of tenogenic tissue.
    • The Role of Regulatory CD4 T Cells in Maintaining Tolerance in a Mouse Model of Autoimmune Hepatitis.

      An Haack, Ira; Derkow, Katja; Riehn, Mathias; Rentinck, Marc-Nicolas; Kühl, Anja A; Lehnardt, Seija; Schott, Eckart; Dept. of Hepatology and Gastroenterology, Charité Universitätsmedizin Berlin, Berlin, Germany. (2015)
      The role of regulatory CD4 T cells (Treg) in immune-mediated liver disease is still under debate. It remains disputed whether Treg suppress T cell-mediated hepatitis in vivo and whether hepatic regulatory T cells are functional in patients with autoimmune hepatitis.
    • The ROSA26-iPSC mouse: a conditional, inducible, and exchangeable resource for studying cellular (De)differentiation.

      Haenebalcke, Lieven; Goossens, Steven; Dierickx, Pieterjan; Bartunkova, Sonia; D'Hont, Jinke; Haigh, Katharina; Hochepied, Tino; Wirth, Dagmar; Nagy, Andras; Haigh, Jody J; et al. (2013-02-21)
      Control of cellular (de)differentiation in a temporal, cell-specific, and exchangeable manner is of paramount importance in the field of reprogramming. Here, we have generated and characterized a mouse strain that allows iPSC generation through the Cre/loxP conditional and doxycycline/rtTA-controlled inducible expression of the OSKM reprogramming factors entirely from within the ROSA26 locus. After reprogramming, these factors can be replaced by genes of interest-for example, to enhance lineage-directed differentiation-with the use of a trap-coupled RMCE reaction. We show that, similar to ESCs, Dox-controlled expression of the cardiac transcriptional regulator Mesp1 together with Wnt inhibition enhances the generation of functional cardiomyocytes upon in vitro differentiation of such RMCE-retargeted iPSCs. This ROSA26-iPSC mouse model is therefore an excellent tool for studying both cellular reprogramming and lineage-directed differentiation factors from the same locus and will greatly facilitate the identification and ease of functional characterization of the genetic/epigenetic determinants involved in these complex processes.
    • Strict control of transgene expression in a mouse model for sensitive biological applications based on RMCE compatible ES cells.

      Sandhu, U; Cebula, M; Behme, S; Riemer, P; Wodarczyk, C; Metzger, D; Reimann, J; Schirmbeck, R; Hauser, H; Wirth, D; et al. (2011-01-01)
      Recombinant mouse strains that harbor tightly controlled transgene expression proved to be indispensible tools to elucidate gene function. Different strategies have been employed to achieve controlled induction of the transgene. However, many models are accompanied by a considerable level of basal expression in the non-induced state. Thereby, applications that request tight control of transgene expression, such as the expression of toxic genes and the investigation of immune response to neo antigens are excluded. We developed a new Cre/loxP-based strategy to achieve strict control of transgene expression. This strategy was combined with RMCE (recombinase mediated cassette exchange) that facilitates the targeting of genes into a tagged site in ES cells. The tightness of regulation was confirmed using luciferase as a reporter. The transgene was induced upon breeding these mice to effector animals harboring either the ubiquitous (ROSA26) or liver-specific (Albumin) expression of CreER(T2), and subsequent feeding with Tamoxifen. Making use of RMCE, luciferase was replaced by Ovalbumin antigen. Mice generated from these ES cells were mated with mice expressing liver-specific CreER(T2). The transgenic mice were examined for the establishment of an immune response. They were fully competent to establish an immune response upon hepatocyte specific OVA antigen expression as indicated by a massive liver damage upon Tamoxifen treatment and did not show OVA tolerance. Together, this proves that this strategy supports strict control of transgenes that is even compatible with highly sensitive biological readouts.
    • Synthetic rewiring and boosting type I interferon responses for visualization and counteracting viral infections.

      Gödecke, Natascha; Riedel, Jan; Herrmann, Sabrina; Behme, Sara; Rand, Ulfert; Kubsch, Tobias; Cicin-Sain, Luka; Hauser, Hansjörg; Köster, Mario; Wirth, Dagmar; et al. (Oxford Academic, 2020-11-18)
      Mammalian first line of defense against viruses is accomplished by the interferon (IFN) system. Viruses have evolved numerous mechanisms to reduce the IFN action allowing them to invade the host and/or to establish latency. We generated an IFN responsive intracellular hub by integrating the synthetic transactivator tTA into the chromosomal Mx2 locus for IFN-based activation of tTA dependent expression modules. The additional implementation of a synthetic amplifier module with positive feedback even allowed for monitoring and reacting to infections of viruses that can antagonize the IFN system. Low and transient IFN amounts are sufficient to trigger these amplifier cells. This gives rise to higher and sustained-but optionally de-activatable-expression even when the initial stimulus has faded out. Amplification of the IFN response induced by IFN suppressing viruses is sufficient to protect cells from infection. Together, this interfaced sensor/actuator system provides a toolbox for robust sensing and counteracting viral infections.
    • Targeting cardiac fibrosis with engineered T cells.

      Aghajanian, Haig; Kimura, Toru; Rurik, Joel G; Hancock, Aidan S; Leibowitz, Michael S; Li, Li; Scholler, John; Monslow, James; Lo, Albert; Han, Wei; et al. (Nature publishing group(NPG), 2019-09-11)
      Fibrosis is observed in nearly every form of myocardial disease1. Upon injury, cardiac fibroblasts in the heart begin to remodel the myocardium by depositing excess extracellular matrix, resulting in increased stiffness and reduced compliance of the tissue. Excessive cardiac fibrosis is an important factor in the progression of various forms of cardiac disease and heart failure2. However, clinical interventions and therapies that target fibrosis remain limited3. Here we demonstrate the efficacy of redirected T cell immunotherapy to specifically target pathological cardiac fibrosis in mice. We find that cardiac fibroblasts that express a xenogeneic antigen can be effectively targeted and ablated by adoptive transfer of antigen-specific CD8+ T cells. Through expression analysis of the gene signatures of cardiac fibroblasts obtained from healthy and diseased human hearts, we identify an endogenous target of cardiac fibroblasts-fibroblast activation protein. Adoptive transfer of T cells that express a chimeric antigen receptor against fibroblast activation protein results in a significant reduction in cardiac fibrosis and restoration of function after injury in mice. These results provide proof-of-principle for the development of immunotherapeutic drugs for the treatment of cardiac disease.
    • Targeting Kaposi's Sarcoma-Associated Herpesvirus ORF21 Tyrosine Kinase and Viral Lytic Reactivation by Tyrosine Kinase Inhibitors Approved for Clinical Use

      Beauclair, Guillaume; Naimo, Eleonora; Dubich, Tatyana; Rückert, Jessica; Koch, Sandra; Dhingra, Akshay; Wirth, Dagmar; Schulz, Thomas F; HZI,Helmholtz-Zentrum für Infektionsforschung GmbH, Inhoffenstr. 7,38124 Braunschweig, Germany. (American Society for Microbiology (ASM), 2019-12-11)
      Kaposi's Sarcoma-associated herpesvirus (KSHV) is the cause of three human malignancies, Kaposi's Sarcoma, Primary Effusion Lymphoma and the plasma cell variant of Multicentric Castleman's Disease. Previous research has shown that several cellular tyrosine kinases play crucial roles during several steps in the virus replication cycle. Two KSHV proteins also have protein kinase function: open reading frame (ORF) 36 encodes a serin-threonine kinase, while ORF21 encodes a thymidine kinase (TK), which has recently been found to be an efficient tyrosine kinase. In this study, we explore the role of the ORF21 tyrosine kinase function in KSHV lytic replication. By generating a recombinant KSHV mutant with an enzymatically inactive ORF21 protein we show that the tyrosine kinase function of ORF21/TK is not required for the progression of the lytic replication in tissue culture, but that it is essential for the phosphorylation and activation to toxic moieties of the antiviral drugs zidovudine and brivudine. In addition, we identify several tyrosine kinase inhibitors, already in clinical use against human malignancies, which potently inhibit not only ORF21 TK kinase function, but also viral lytic reactivation and the development of KSHV-infected endothelial tumors in mice. As they target both cellular tyrosine kinases and a viral kinase, some of these compounds might find a use in the treatment of KSHV-associated malignancies.Importance: Our findings address the role of KSHV ORF21 as a tyrosine kinase during lytic replication and the activation of prodrugs in KSHV-infected cells. We also show the potential of selected clinically approved tyrosine kinase inhibitors to inhibit KSHV TK, KSHV lytic replication, infectious virions release and the development of an endothelial tumor. Since they target both cellular tyrosine kinases supporting productive viral replication and a viral kinase, these drugs, which are already approved for clinical use, may be suitable for repurposing for the treatment of KSHV-related tumors in AIDS patients or transplant recipients.
    • TLR9-Mediated Conditioning of Liver Environment Is Essential for Successful Intrahepatic Immunotherapy and Effective Memory Recall.

      Cebula, Marcin; Riehn, Mathias; Hillebrand, Upneet; Kratzer, Ramona F; Kreppel, Florian; Koutsoumpli, Georgia; Daemen, Toos; Hauser, Hansjoerg; Wirth, Dagmar; Helmholtz -Zentrum für Infektionsforschung GmbH. Inhoffenstr. 7, 38124 Braunschweig, Germany. (2017-07-14)
      Immune defense against hepatotropic viruses such as hepatitis B (HBV) and hepatitis C (HCV) poses a major challenge for therapeutic approaches. Intrahepatic cytotoxic CD8 T cells that are crucial for an immune response against these viruses often become exhausted resulting in chronic infection. We elucidated the T cell response upon therapeutic vaccination in inducible transgenic mouse models in which variable percentages of antigen-expressing hepatocytes can be adjusted, providing mosaic antigen distribution and reflecting the varying viral antigen loads observed in patients. Vaccination-induced endogenous CD8 T cells could eliminate low antigen loads in liver but were functionally impaired if confronted with elevated antigen loads. Strikingly, only by conditioning the liver environment with TLR9 ligand prior and early after peripheral vaccination, successful immunization against high intrahepatic antigen density with its elimination was achieved. Moreover, TLR9 immunomodulation was also indispensable for functional memory recall after high frequency antigen challenge. Together, the results indicate that TLR9-mediated conditioning of liver environment during therapeutic vaccination or antigen reoccurrence is crucial for an efficacious intrahepatic T cell response.
    • Towards rational engineering of cells: Recombinant gene expression in defined chromosomal loci

      Nehlsen, Kristina; da Gama-Norton, Leonor; Schucht, Roland; Hauser, Hansjörg; Wirth, Dagmar (2011-11-22)
    • Toxin-antitoxin based transgene expression in mammalian cells.

      Nehlsen, K; Herrmann, S; Zauers, J; Hauser, Hansjoerg; Wirth, D; Helmholtz Centre for Infection Research, Braunschweig, Germany. (2010-03)
      Long-term, recombinant gene expression in mammalian cells depends on the nature of the transgene integration site and its inherent properties to modulate transcription (epigenetic effects). Here we describe a method by which high transgene expression is achieved and stabilized in extensively proliferating cultures. The method is based on strict co-expression of the transgene with an antitoxin in cells that express the respective toxin. Since the strength of antitoxin expression correlates with an advantage for cell growth, the cells with strong antitoxin expression are enriched over time in cultures of heterogeneous cells. This principle was applied to CHO cell lines that conditionally express the toxin kid and that are transduced to co-express the antitoxin kis together with different transgenes of interest. Cultivation of pools of transfectants that express the toxin steadily increase their transgene expression within several weeks to reach a maximum that is up to 120-fold over the initial status. In contrast, average transgene expression drops in the absence of toxin expression. Together, we show that cells conditionally expressing kid can be employed to create overexpressing cells by a simple coupling of kis to the transgene of interest, without further manipulation and in absence of selectable drugs.
    • Type I interferon receptor signaling delays Kupffer cell replenishment during acute fulminant viral hepatitis.

      Borst, Katharina; Frenz, Theresa; Spanier, Julia; Tegtmeyer, Pia-Katharina; Chhatbar, Chintan; Skerra, Jennifer; Ghita, Luca; Namineni, Sukumar; Lienenklaus, Stefan; Köster, Mario; et al. (2017-12-21)
      Virus-induced fulminant hepatitis is a major cause of acute liver failure. During acute viral hepatitis the impact of type I interferon (IFN-I) on myeloid cells, including liver-resident Kupffer cells (KC), is only partially understood. Herein, we dissected the impact of locally induced IFN-I responses on myeloid cell function and hepatocytes during acute liver inflammation. Two different DNA-encoded viruses, vaccinia virus (VACV) and murine cytomegalovirus (MCMV), were studied. In vivo imaging was applied to visualize local IFN-β induction and IFN-I receptor (IFNAR) triggering in VACV-infected reporter mice. Furthermore, mice with a cell type-selective IFNAR ablation were analyzed to dissect the role of IFNAR signaling in myeloid cells and hepatocytes. Experiments with Cx3cr1 VACV infection induced local IFN-β responses, which lead to IFNAR signaling primarily within the liver. IFNAR triggering was needed to control the infection and prevent fulminant hepatitis. The severity of liver inflammation was independent of IFNAR triggering of hepatocytes, whereas IFNAR triggering of myeloid cells protected from excessive inflammation. Upon VACV or MCMV infection KC disappeared, whereas infiltrating monocytes differentiated to KC afterwards. During IFNAR triggering such replenished monocyte-derived KC comprised more IFNAR-deficient than -competent cells in mixed bone marrow chimeric mice, whereas after the decline of IFNAR triggering both subsets showed an even distribution. Upon VACV infection IFNAR triggering of myeloid cells, but not of hepatocytes, critically modulates acute viral hepatitis. During infection with DNA-encoded viruses IFNAR triggering of liver-infiltrating blood monocytes delays the development of monocyte-derived KC, pointing towards new therapeutic strategies for acute viral hepatitis.
    • Uncoupling of the dynamics of host-pathogen interaction uncovers new mechanisms of viral interferon antagonism at the single-cell level.

      Rand, Ulfert; Hillebrand, Upneet; Sievers, Stephanie; Willenberg, Steffi; Köster, Mario; Hauser, Hansjörg; Wirth, Dagmar (Oxford University Press, 2014-06-03)
      Antiviral defence in mammals is mediated through type-I interferons (IFNs). Viruses antagonise this process through expression of IFN antagonist proteins (IAPs). Understanding and modelling of viral escape mechanisms and the dynamics of IAP action has the potential to facilitate the development of specific and safe drugs. Here, we describe the dynamics of interference by selected viral IAPs, NS1 from Influenza A virus and NS3/4A from Hepatitis C virus. We used Tet-inducible IAP gene expression to uncouple this process from virus-driven dynamics. Stochastic activation of the IFN-β gene required the use of single-cell live imaging to define the efficacy of the inhibitors during the virus-induced signalling processes. We found significant correlation between the onset of IAP expression and halted IFN-β expression in cells where IFN-β induction had already occurred. These data indicate that IAPs not only prevent antiviral signalling prior to IFN-β induction, but can also stop the antiviral response even after it has been activated. We found reduced NF-κB activation to be the underlying mechanism by which activated IFN expression can be blocked. This work demonstrates a new mechanism by which viruses can antagonise the IFN response.