• A new reporter mouse cytomegalovirus reveals maintained immediate-early gene expression but poor virus replication in cycling liver sinusoidal endothelial cells.

      Dag, Franziska; Weingärtner, Adrien; Butueva, Milada; Conte, Ianina; Holzki, Julia; May, Tobias; Adler, Barbara; Wirth, Dagmar; Cicin-Sain, Luka; Helmholtz Centre for infection research, Inhoffenstr. 7, 38124 Braunschweig, Germany. (2013-06-17)
      The MCMV major immediate early promoter/enhancer (MIEP) is a bidirectional promoter that drives the expression of the three immediate early viral genes, namely ie1, ie2 and ie3. The regulation of their expression is intensively studied, but still incompletely understood.
    • Murine cytomegalovirus infection via the intranasal route offers a robust model of immunity upon mucosal CMV infection.

      Oduro, Jennifer D; Redeker, Anke; Lemmermann, Niels A W; Ebermann, Linda; Marandu, Thomas F; Dekhtiarenko, Iryna; Holzki, Julia K; Busch, Dirk; Arens, Ramon; Cicin-Sain, Luka; et al. (2015-11-10)
      Cytomegalovirus (CMV) is a ubiquitous virus, causing the most common congenital infection in humans, yet a vaccine against this virus is not available. The experimental study of immunity against CMV in animal models of infection, such as the infection of mice with the mouse CMV (MCMV), has relied on systemic intraperitoneal infection protocols, although the infection naturally transmits by mucosal routes via body fluids containing CMV. To characterize the biology of infections by mucosal routes, we have compared the kinetics of virus replication, the latent viral load, and CD8 T cell responses in lymphoid organs upon experimental intranasal and intragastric infection to intraperitoneal infection of two unrelated mouse strains. We have observed that intranasal infection induces robust and persistent virus replication in lungs and salivary glands, but a poor one in the spleen. CD8 T cell responses were somewhat weaker than upon intraperitoneal infection, but showed similar kinetic profiles and phenotypes of antigen-specific cells. On the other hand, intragastric infection resulted in abortive or poor virus replication in all tested organs, and poor T cell responses to the virus, especially at late times after infection. Consistent with the T cell kinetics, the MCMV latent load was high in the lungs, but low in the spleen of intranasally infected mice and lowest in all tested organs upon intragastric infection. In conclusion, we show here that intranasal, but not intragastric infection of mice with MCMV represents a robust model to study short and long-term biology of CMV infection by a mucosal route.
    • CMV and Immunosenescence: from basics to clinics.

      Solana, Rafael; Tarazona, Raquel; Aiello, Allison E; Akbar, Arne N; Appay, Victor; Beswick, Mark; Bosch, Jos A; Campos, Carmen; Cantisán, Sara; Cicin-Sain, Luka; et al. (2012)
      Alone among herpesviruses, persistent Cytomegalovirus (CMV) markedly alters the numbers and proportions of peripheral immune cells in infected-vs-uninfected people. Because the rate of CMV infection increases with age in most countries, it has been suggested that it drives or at least exacerbates "immunosenescence". This contention remains controversial and was the primary subject of the Third International Workshop on CMV & Immunosenescence which was held in Cordoba, Spain, 15-16th March, 2012. Discussions focused on several main themes including the effects of CMV on adaptive immunity and immunosenescence, characterization of CMV-specific T cells, impact of CMV infection and ageing on innate immunity, and finally, most important, the clinical implications of immunosenescence and CMV infection. Here we summarize the major findings of this workshop.
    • Reversible silencing of cytomegalovirus genomes by type I interferon governs virus latency.

      Dağ, Franziska; Dölken, Lars; Holzki, Julia; Drabig, Anja; Weingärtner, Adrien; Schwerk, Johannes; Lienenklaus, Stefan; Conte, Ianina; Geffers, Robert; Davenport, Colin; et al. (2014-02)
      Herpesviruses establish a lifelong latent infection posing the risk for virus reactivation and disease. In cytomegalovirus infection, expression of the major immediate early (IE) genes is a critical checkpoint, driving the lytic replication cycle upon primary infection or reactivation from latency. While it is known that type I interferon (IFN) limits lytic CMV replication, its role in latency and reactivation has not been explored. In the model of mouse CMV infection, we show here that IFNβ blocks mouse CMV replication at the level of IE transcription in IFN-responding endothelial cells and fibroblasts. The IFN-mediated inhibition of IE genes was entirely reversible, arguing that the IFN-effect may be consistent with viral latency. Importantly, the response to IFNβ is stochastic, and MCMV IE transcription and replication were repressed only in IFN-responsive cells, while the IFN-unresponsive cells remained permissive for lytic MCMV infection. IFN blocked the viral lytic replication cycle by upregulating the nuclear domain 10 (ND10) components, PML, Sp100 and Daxx, and their knockdown by shRNA rescued viral replication in the presence of IFNβ. Finally, IFNβ prevented MCMV reactivation from endothelial cells derived from latently infected mice, validating our results in a biologically relevant setting. Therefore, our data do not only define for the first time the molecular mechanism of IFN-mediated control of CMV infection, but also indicate that the reversible inhibition of the virus lytic cycle by IFNβ is consistent with the establishment of CMV latency.
    • Mouse CMV infection delays antibody class switch upon an unrelated virus challenge.

      Marandu, Thomas F; Finsterbusch, Katja; Kröger, Andrea; Čičin-Šain, Luka; Helmholtz Centre for infection research, Inhoffenstr. 7, D-38124 Braunschweig, Germany. (2014-06)
      Poor immune protection upon vaccination is a critical determinant of immunosenescence. Latent Cytomegalovirus (CMV) infection has been associated with poor antibody responses to vaccination, but a causative role for CMV in the poor immune response requires experimental evidence and thus could not be confirmed in clinical studies. To test the hypothesis that latent CMV infection causes poor antibody responses, we infected young or adult mice with mouse CMV and challenged them with Vesicular stomatitis virus (VSV) at 15 or 18months of age. Latent, but not primary infection with mouse CMV resulted in diminished neutralizing titers of the serum IgG fraction at day 7 post challenge, which recovered by day 14 post challenge. This phenomenon was specific for mice infected with mouse CMV, but not mice infected with other herpesviruses, like murine herpesvirus-68 or herpes simplex virus type 1, or mice infected with non-persistent viruses, such as influenza or Vaccinia virus. Hence, our data indicate a delay in IgG class-switch that was specific for the CMV infection. Herpesviral infections did not change the B-cell memory compartment, and increased the size of the effector-memory subset of blood CD4 T-cells only when administered in combination. Furthermore, CD4 T-cell response to VSV infection was maintained in latently infected mice. Therefore, our results argue that latent CMV infection impairs B-cell, but not T-cell responses to a challenge with VSV and delays antibody class-switch by a mechanism which may be independent of T-cell help.
    • The human cytomegalovirus UL51 protein is essential for viral genome cleavage-packaging and interacts with the terminase subunits pUL56 and pUL89.

      Borst, Eva Maria; Kleine-Albers, Jennifer; Gabaev, Ildar; Babic, Marina; Wagner, Karen; Binz, Anne; Degenhardt, Inga; Kalesse, Markus; Jonjic, Stipan; Bauerfeind, Rudolf; et al. (2013-02)
      Cleavage of human cytomegalovirus (HCMV) genomes as well as their packaging into capsids is an enzymatic process mediated by viral proteins and therefore a promising target for antiviral therapy. The HCMV proteins pUL56 and pUL89 form the terminase and play a central role in cleavage-packaging, but several additional viral proteins, including pUL51, had been suggested to contribute to this process, although they remain largely uncharacterized. To study the function of pUL51 in infected cells, we constructed HCMV mutants encoding epitope-tagged versions of pUL51 and used a conditionally replicating virus (HCMV-UL51-ddFKBP), in which pUL51 levels could be regulated by a synthetic ligand. In cells infected with HCMV-UL51-ddFKBP, viral DNA replication was not affected when pUL51 was knocked down. However, no unit-length genomes and no DNA-filled C capsids were found, indicating that cleavage of concatemeric HCMV DNA and genome packaging into capsids did not occur in the absence of pUL51. pUL51 was expressed mainly with late kinetics and was targeted to nuclear replication compartments, where it colocalized with pUL56 and pUL89. Upon pUL51 knockdown, pUL56 and pUL89 were no longer detectable in replication compartments, suggesting that pUL51 is needed for their correct subnuclear localization. Moreover, pUL51 was found in a complex with the terminase subunits pUL56 and pUL89. Our data provide evidence that pUL51 is crucial for HCMV genome cleavage-packaging and may represent a third component of the viral terminase complex. Interference with the interactions between the terminase subunits by antiviral drugs could be a strategy to disrupt the HCMV replication cycle.
    • Leishmania promastigotes lack phosphatidylserine but bind annexin V upon permeabilization or miltefosine treatment.

      Weingärtner, Adrien; Kemmer, Gerdi; Müller, Frederic D; Zampieri, Ricardo Andrade; Gonzaga dos Santos, Marcos; Schiller, Jürgen; Pomorski, Thomas Günther; Institute of Biology, Humboldt-Universität zu Berlin, Berlin, Germany. (2012)
      The protozoan parasite Leishmania is an intracellular pathogen infecting and replicating inside vertebrate host macrophages. A recent model suggests that promastigote and amastigote forms of the parasite mimic mammalian apoptotic cells by exposing phosphatidylserine (PS) at the cell surface to trigger their phagocytic uptake into host macrophages. PS presentation at the cell surface is typically analyzed using fluorescence-labeled annexin V. Here we show that Leishmania promastigotes can be stained by fluorescence-labeled annexin V upon permeabilization or miltefosine treatment. However, combined lipid analysis by thin-layer chromatography, mass spectrometry and (31)P nuclear magnetic resonance (NMR) spectroscopy revealed that Leishmania promastigotes lack any detectable amount of PS. Instead, we identified several other phospholipid classes such phosphatidic acid, phosphatidylethanolamine; phosphatidylglycerol and phosphatidylinositol as candidate lipids enabling annexin V staining.
    • Block of death-receptor apoptosis protects mouse cytomegalovirus from macrophages and is a determinant of virulence in immunodeficient hosts.

      Ebermann, Linda; Ruzsics, Zsolt; Guzmán, Carlos A; van Rooijen, Nico; Casalegno-Garduño, Rosaely; Koszinowski, Ulrich; Cičin-Šain, Luka; Department of Vaccinology and Applied Microbiology, Helmholtz Centre for Infection Research, Braunschweig, Germany. (2012-12)
      The inhibition of death-receptor apoptosis is a conserved viral function. The murine cytomegalovirus (MCMV) gene M36 is a sequence and functional homologue of the human cytomegalovirus gene UL36, and it encodes an inhibitor of apoptosis that binds to caspase-8, blocks downstream signaling and thus contributes to viral fitness in macrophages and in vivo. Here we show a direct link between the inability of mutants lacking the M36 gene (ΔM36) to inhibit apoptosis, poor viral growth in macrophage cell cultures and viral in vivo fitness and virulence. ΔM36 grew poorly in RAG1 knockout mice and in RAG/IL-2-receptor common gamma chain double knockout mice (RAGγC(-/-)), but the depletion of macrophages in either mouse strain rescued the growth of ΔM36 to almost wild-type levels. This was consistent with the observation that activated macrophages were sufficient to impair ΔM36 growth in vitro. Namely, spiking fibroblast cell cultures with activated macrophages had a suppressive effect on ΔM36 growth, which could be reverted by z-VAD-fmk, a chemical apoptosis inhibitor. TNFα from activated macrophages synergized with IFNγ in target cells to inhibit ΔM36 growth. Hence, our data show that poor ΔM36 growth in macrophages does not reflect a defect in tropism, but rather a defect in the suppression of antiviral mediators secreted by macrophages. To the best of our knowledge, this shows for the first time an immune evasion mechanism that protects MCMV selectively from the antiviral activity of macrophages, and thus critically contributes to viral pathogenicity in the immunocompromised host devoid of the adaptive immune system.
    • Cytomegalovirus infection impairs immune responses and accentuates T-cell pool changes observed in mice with aging.

      Cicin-Sain, Luka; Brien, James D; Uhrlaub, Jennifer L; Drabig, Anja; Marandu, Thomas F; Nikolich-Zugich, Janko; Department of Vaccinology and Applied Microbiology, Helmholtz Center for Infection Research, Braunschweig, Germany. (2012-08)
      Prominent immune alterations associated with aging include the loss of naïve T-cell numbers, diversity and function. While genetic contributors and mechanistic details in the aging process have been addressed in multiple studies, the role of environmental agents in immune aging remains incompletely understood. From the standpoint of environmental infectious agents, latent cytomegalovirus (CMV) infection has been associated with an immune risk profile in the elderly humans, yet the cause-effect relationship of this association remains unclear. Here we present direct experimental evidence that mouse CMV (MCMV) infection results in select T-cell subset changes associated with immune aging, namely the increase of relative and absolute counts of CD8 T-cells in the blood, with a decreased representation of the naïve and the increased representation of the effector memory blood CD8 T-cells. Moreover, MCMV infection resulted in significantly weaker CD8 responses to superinfection with Influenza, Human Herpes Virus I or West-Nile-Virus, even 16 months following MCMV infection. These irreversible losses in T-cell function could not be observed in uninfected or in vaccinia virus-infected controls and were not due to the immune-evasive action of MCMV genes. Rather, the CD8 activation in draining lymph nodes upon viral challenge was decreased in MCMV infected mice and the immune response correlated directly to the frequency of the naïve and inversely to that of the effector cells in the blood CD8 pool. Therefore, latent MCMV infection resulted in pronounced changes of the T-cell compartment consistent with impaired naïve T-cell function.
    • A replicating cytomegalovirus-based vaccine encoding a single Ebola virus nucleoprotein CTL epitope confers protection against Ebola virus.

      Tsuda, Yoshimi; Caposio, Patrizia; Parkins, Christopher J; Botto, Sara; Messaoudi, Ilhem; Cicin-Sain, Luka; Feldmann, Heinz; Jarvis, Michael A; Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, United States of America. (2011-08)
      Human outbreaks of Ebola virus (EBOV) are a serious human health concern in Central Africa. Great apes (gorillas/chimpanzees) are an important source of EBOV transmission to humans due to increased hunting of wildlife including the 'bush-meat' trade. Cytomegalovirus (CMV) is an highly immunogenic virus that has shown recent utility as a vaccine platform. CMV-based vaccines also have the unique potential to re-infect and disseminate through target populations regardless of prior CMV immunity, which may be ideal for achieving high vaccine coverage in inaccessible populations such as great apes.
    • Expression of S100A8/A9 in HaCaT keratinocytes alters the rate of cell proliferation and differentiation.

      Voss, Andreas; Bode, Günther; Sopalla, Claudia; Benedyk, Malgorzata; Varga, Georg; Böhm, Markus; Nacken, Wolfgang; Kerkhoff, Claus; Institute of Immunology, University of Muenster, Muenster, Germany. (2011-01-21)
      S100A8/A9 promotes NADPH oxidase in HaCaT keratinocytes and subsequently increases NFκB activation, which plays important roles in the balance between epidermal growth and differentiation. S100A8/A9-positive HaCaT cells present with a significantly reduced rate of cell division and greater expression of two keratinocyte differentiation markers, involucrin and filaggrin, than control cells. S100A8/A9 mutants fail to enhance NFκB activation, TNFα-induced IL-8 gene expression and NFκB p65 phosphorylation, and S100A8/A9-positive cells demonstrate better cell survival in forced suspension culture than mutant cells. S100A8/A9 is induced in epithelial cells in response to stress. Therefore, S100A8/A9-mediated growth arrest could have implications for tissue remodeling and repair.