Analysis of Practical Identifiability of a Viral Infection Model.
Average rating
Cast your vote
You can rate an item by clicking the amount of stars they wish to award to this item.
When enough users have cast their vote on this item, the average rating will also be shown.
Star rating
Your vote was cast
Thank you for your feedback
Thank you for your feedback
Issue Date
2016
Metadata
Show full item recordAbstract
Mathematical modelling approaches have granted a significant contribution to life sciences and beyond to understand experimental results. However, incomplete and inadequate assessments in parameter estimation practices hamper the parameter reliability, and consequently the insights that ultimately could arise from a mathematical model. To keep the diligent works in modelling biological systems from being mistrusted, potential sources of error must be acknowledged. Employing a popular mathematical model in viral infection research, existing means and practices in parameter estimation are exemplified. Numerical results show that poor experimental data is a main source that can lead to erroneous parameter estimates despite the use of innovative parameter estimation algorithms. Arbitrary choices of initial conditions as well as data asynchrony distort the parameter estimates but are often overlooked in modelling studies. This work stresses the existence of several sources of error buried in reports of modelling biological systems, voicing the need for assessing the sources of error, consolidating efforts in solving the immediate difficulties, and possibly reconsidering the use of mathematical modelling to quantify experimental data.Citation
Analysis of Practical Identifiability of a Viral Infection Model. 2016, 11 (12):e0167568 PLoS ONEAffiliation
Helmholtz Centre for infection research, Inhoffenstr. 7, 38124 Braunschweig, Germany.Journal
PloS onePubMed ID
28036339Type
ArticleLanguage
enISSN
1932-6203ae974a485f413a2113503eed53cd6c53
10.1371/journal.pone.0167568
Scopus Count
The following license files are associated with this item:
- Creative Commons
Except where otherwise noted, this item's license is described as http://creativecommons.org/licenses/by-nc-sa/4.0/
Related articles
- Parameter Estimation in Mathematical Models of Viral Infections Using R.
- Authors: Nguyen VK, Hernandez-Vargas EA
- Issue date: 2018
- Assessing parameter identifiability in compartmental dynamic models using a computational approach: application to infectious disease transmission models.
- Authors: Roosa K, Chowell G
- Issue date: 2019 Jan 14
- DAISY: a new software tool to test global identifiability of biological and physiological systems.
- Authors: Bellu G, Saccomani MP, Audoly S, D'Angiò L
- Issue date: 2007 Oct
- Review: To be or not to be an identifiable model. Is this a relevant question in animal science modelling?
- Authors: Muñoz-Tamayo R, Puillet L, Daniel JB, Sauvant D, Martin O, Taghipoor M, Blavy P
- Issue date: 2018 Apr
- SysBioMed report: advancing systems biology for medical applications.
- Authors: Wolkenhauer O, Fell D, De Meyts P, Blüthgen N, Herzel H, Le Novère N, Höfer T, Schürrle K, van Leeuwen I
- Issue date: 2009 May