• Login
    View Item 
    •   Home
    • Department of the research group infection genetics (INFG)
    • publications of the research group infection genetics (INFG)
    • View Item
    •   Home
    • Department of the research group infection genetics (INFG)
    • publications of the research group infection genetics (INFG)
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of HZICommunitiesTitleAuthorsIssue DateSubmit DateSubjectsJournalTypesSubject (MeSH)This CollectionTitleAuthorsIssue DateSubmit DateSubjectsJournalTypesSubject (MeSH)

    My Account

    LoginRegister

    Local Links

    About: PolicyHelmholtz-Zentrum für Infektionsforschung HomepageHZI-Library HomepageContact usOpen AccessPublishing ApproachGetting StartedEditing ProfileBrowsing OptionsUsing SearchSubmitting ContentLicenced Journals & access details here

    Statistics

    Display statistics

    Genomic structure and expression of Jmjd6 and evolutionary analysis in the context of related JmjC domain containing proteins

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    12864_2007_Article_1486.pdf
    Size:
    3.793Mb
    Format:
    PDF
    Download
    Average rating
     
       votes
    Cast your vote
    You can rate an item by clicking the amount of stars they wish to award to this item. When enough users have cast their vote on this item, the average rating will also be shown.
    Star rating
     
    Your vote was cast
    Thank you for your feedback
    Authors
    Hahn, Phillip
    Böse, Jens
    Edler, Stefanie
    Lengeling, Andreas
    Issue Date
    2008-06-18
    
    Metadata
    Show full item record
    Abstract
    Abstract Background The jumonji C (JmjC) domain containing gene 6 (Jmjd6, previously known as phosphatidylserine receptor) has misleadingly been annotated to encode a transmembrane receptor for the engulfment of apoptotic cells. Given the importance of JmjC domain containing proteins in controlling a wide range of diverse biological functions, we undertook a comparative genomic analysis to gain further insights in Jmjd6 gene organisation, evolution, and protein function. Results We describe here a semiautomated computational pipeline to identify and annotate JmjC domain containing proteins. Using a sequence segment N-terminal of the Jmjd6 JmjC domain as query for a reciprocal BLAST search, we identified homologous sequences in 62 species across all major phyla. Retrieved Jmjd6 sequences were used to phylogenetically analyse corresponding loci and their genomic neighbourhood. This analysis let to the identification and characterisation of a bi-directional transcriptional unit compromising the Jmjd6 and 1110005A03Rik genes and to the recognition of a new, before overseen Jmjd6 exon in mammals. Using expression studies, two novel Jmjd6 splice variants were identified and validated in vivo. Analysis of the Jmjd6 neighbouring gene 1110005A03Rik revealed an incident deletion of this gene in two out of three earlier reported Jmjd6 knockout mice, which might affect previously described conflicting phenotypes. To determine potentially important residues for Jmjd6 function a structural model of the Jmjd6 protein was calculated based on sequence conservation. This approach identified a conserved double-stranded β-helix (DSBH) fold and a HxDxnH facial triad as structural motifs. Moreover, our systematic annotation in nine species identified 313 DSBH fold-containing proteins that split into 25 highly conserved subgroups. Conclusion We give further evidence that Jmjd6 most likely has a function as a nonheme-Fe(II)-2-oxoglutarate-dependent dioxygenase as previously suggested. Further, we provide novel insights into the evolution of Jmjd6 and other related members of the superfamily of JmjC domain containing proteins. Finally, we discuss possibilities of the involvement of Jmjd6 and 1110005A03Rik in an antagonistic biochemical pathway.
    Citation
    BMC Genomics. 2008 Jun 18;9(1):293
    URI
    http://dx.doi.org/10.1186/1471-2164-9-293
    http://hdl.handle.net/10033/620693
    Type
    Journal Article
    Collections
    publications of the research group infection genetics (INFG)

    entitlement

     

    DSpace software copyright © 2002-2023  DuraSpace
    Quick Guide | Kontakt | Feedback abschicken
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.