• Login
    View Item 
    •   Home
    • Division of Molekulare Strukurbiologie (MOSB)
    • RG Biophysical Analysis (BA)
    • Publications from RG Biophysical Analysis (BA)
    • View Item
    •   Home
    • Division of Molekulare Strukurbiologie (MOSB)
    • RG Biophysical Analysis (BA)
    • Publications from RG Biophysical Analysis (BA)
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of HZICommunitiesTitleAuthorsIssue DateSubmit DateSubjectsJournalTypesSubject (MeSH)This CollectionTitleAuthorsIssue DateSubmit DateSubjectsJournalTypesSubject (MeSH)

    My Account

    LoginRegister

    Local Links

    About: PolicyHelmholtz-Zentrum für Infektionsforschung HomepageHZI-Library HomepageContact usOpen AccessPublishing ApproachGetting StartedEditing ProfileBrowsing OptionsUsing SearchSubmitting ContentLicenced Journals & access details here

    Statistics

    Display statistics

    Solution structure of the Equine Infectious Anemia Virus p9 protein: a rationalization of its different ALIX binding requirements compared to the analogous HIV-p6 protein

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    12900_2009_Article_294.pdf
    Size:
    1.702Mb
    Format:
    PDF
    Download
    Average rating
     
       votes
    Cast your vote
    You can rate an item by clicking the amount of stars they wish to award to this item. When enough users have cast their vote on this item, the average rating will also be shown.
    Star rating
     
    Your vote was cast
    Thank you for your feedback
    Authors
    Sharma, Alok
    Bruns, Karsten
    Röder, René
    Henklein, Peter
    Votteler, Jörg
    Wray, Victor
    Schubert, Ulrich
    Issue Date
    2009-12-17
    
    Metadata
    Show full item record
    Abstract
    Abstract Background The equine infection anemia virus (EIAV) p9 Gag protein contains the late (L-) domain required for efficient virus release of nascent virions from the cell membrane of infected cell. Results In the present study the p9 protein and N- and C-terminal fragments (residues 1-21 and 22-51, respectively) were chemically synthesized and used for structural analyses. Circular dichroism and 1H-NMR spectroscopy provide the first molecular insight into the secondary structure and folding of this 51-amino acid protein under different solution conditions. Qualitative 1H-chemical shift and NOE data indicate that in a pure aqueous environment p9 favors an unstructured state. In its most structured state under hydrophobic conditions, p9 adopts a stable helical structure within the C-terminus. Quantitative NOE data further revealed that this α-helix extends from Ser-27 to Ser-48, while the N-terminal residues remain unstructured. The structural elements identified for p9 differ substantially from that of the functional homologous HIV-1 p6 protein. Conclusions These structural differences are discussed in the context of the different types of L-domains regulating distinct cellular pathways in virus budding. EIAV p9 mediates virus release by recruiting the ALG2-interacting protein X (ALIX) via the YPDL-motif to the site of virus budding, the counterpart of the YPXnL-motif found in p6. However, p6 contains an additional PTAP L-domain that promotes HIV-1 release by binding to the tumor susceptibility gene 101 (Tsg101). The notion that structures found in p9 differ form that of p6 further support the idea that different mechanisms regulate binding of ALIX to primary versus secondary L-domains types.
    Citation
    BMC Structural Biology. 2009 Dec 17;9(1):74
    URI
    http://dx.doi.org/10.1186/1472-6807-9-74
    http://hdl.handle.net/10033/620696
    Type
    Journal Article
    Collections
    Publications from RG Biophysical Analysis (BA)

    entitlement

     

    DSpace software copyright © 2002-2023  DuraSpace
    Quick Guide | Kontakt | Feedback abschicken
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.