• Design and characterization of dietary assessment in the German National Cohort.

      Knüppel, Sven; Clemens, Matthias; Conrad, Johanna; Gastell, Sylvia; Michels, Karin B; Leitzmann, Michael; Krist, Lilian; Pischon, Tobias; Krause, Gerard; Ahrens, Wolfgang; et al. (Springer Nature, 2019-01-15)
      BACKGROUND/OBJECTIVES: The aim of the study was to describe a novel dietary assessment strategy based on two instruments complemented by information from an external population applied to estimate usual food intake in the large-scale multicenter German National Cohort (GNC). As proof of concept, we applied the assessment strategy to data from a pretest study (2012-2013) to assess the feasibility of the novel assessment strategy. SUBJECTS/METHODS: First, the consumption probability for each individual was modeled using three 24 h food lists (24h-FLs) and frequencies from one food frequency questionnaire (FFQ). Second, daily consumed food amounts were estimated from the representative German National Nutrition Survey II (NVS II) taking the characteristics of the participants into account. Usual food intake was estimated using the product of consumption probability and amounts. RESULTS: We estimated usual intake of 41 food groups in 318 men and 377 women. The participation proportion was 100, 84.4, and 68.5% for the first, second, and third 24h-FL, respectively. We observed no associations between the probability of participating and lifestyle factors. The estimated distributions of usual food intakes were plausible and total energy was estimated to be 2707 kcal/day for men and 2103 kcal/day for women. The estimated consumption frequencies did not differ substantially between men and women with only few exceptions. The differences in energy intake between men and women were mostly due to differences in estimated daily amounts. CONCLUSIONS: The combination of repeated 24h-FLs, a FFQ, and consumption-day amounts from a reference population represents a user-friendly dietary assessment approach having generated plausible, but not yet validated, food intake values in the pretest study
    • DncV Synthesizes Cyclic GMP-AMP and Regulates Biofilm Formation and Motility in ECOR31.

      Li, Fengyang; Cimdins, Annika; Rohde, Manfred; Jänsch, Lothar; Kaever, Volkhard; Nimtz, Manfred; Römling, Ute; HZI, Helmholtz Zentrum für Infektionsforschung GmbH, Inhoffenstr. 7, 38124 Braunschweig Germany. (ASM, 2019-03-05)
      Cyclic dinucleotides (cDNs) act as intracellular second messengers, modulating bacterial physiology to regulate the fundamental life style transition between motility and sessility commonly known as biofilm formation. Cyclic GMP-AMP (cGAMP), synthesized by the dinucleotide cyclase DncV, is a newly discovered cDN second messenger involved in virulence and chemotaxis in Vibrio cholerae O1 biovar El Tor. Here we report a novel role for horizontally transferred DncV in cGAMP production and regulation of biofilm formation and motility in the animal commensal strain Escherichia coli ECOR31. ECOR31 expresses a semiconstitutive temperature-independent rdar (red, dry, and rough) morphotype on Congo red agar plates characterized by the extracellular matrix components cellulose and curli fimbriae which requires activation by the major biofilm regulator CsgD and cyclic di-GMP signaling. In contrast, C-terminal His-tagged DncV negatively regulates the rdar biofilm morphotype and cell aggregation via downregulation of csgD mRNA steady-state level. Furthermore, DncV sequentially promotes and inhibits adhesion to the abiotic surface after 24 h and 48 h of growth, respectively. DncV also suppresses swimming and swarming motility posttranscriptional of the class 1 flagellum regulon gene flhD Purified DncV produced different cDNs, cyclic di-GMP, cyclic di-AMP, an unknown product(s), and the dominant species 3'3'-cGAMP. In vivo, only the 3'3'-cGAMP concentration was elevated upon short-term overexpression of dncV, making this work a first report on cGAMP production in E. coli Regulation of rdar biofilm formation and motility upon overexpression of untagged DncV in combination with three adjacent cotransferred gene products suggests a novel temperature-dependent cGAMP signaling module in E. coli ECOR31.IMPORTANCE The ability of bacteria to sense and respond to environmental signals is critical for survival. Bacteria use cyclic dinucleotides as second messengers to regulate a number of physiological processes, such as the fundamental life style transition between motility and sessility (biofilm formation). cGAMP, which is synthesized by a dinucleotide cyclase called DncV, is a newly discovered second messenger involved in virulence and chemotaxis in the Vibrio cholerae biovar El Tor causing the current 7th cholera pandemic. However, to what extent cGAMP exists and participates in physiological processes in other bacteria is still unknown. In this study, we found an elevated cGAMP level to possibly regulate biofilm formation and motility in the animal commensal E. coli strain ECOR31. Thus, we detected a novel role for cGAMP signaling in regulation of physiological processes other than those previously reported in proteobacterial species.
    • Neurobeachin and the Kinesin KIF21B Are Critical for Endocytic Recycling of NMDA Receptors and Regulate Social Behavior.

      Gromova, Kira V; Muhia, Mary; Rothammer, Nicola; Gee, Christine E; Thies, Edda; Schaefer, Irina; Kress, Sabrina; Kilimann, Manfred W; Shevchuk, Olga; Oertner, Thomas G; et al. (Elsevier, 2018-05-29)
      Autism spectrum disorders (ASDs) are associated with mutations affecting synaptic components, including GluN2B-NMDA receptors (NMDARs) and neurobeachin (NBEA). NBEA participates in biosynthetic pathways to regulate synapse receptor targeting, synaptic function, cognition, and social behavior. However, the role of NBEA-mediated transport in specific trafficking routes is unclear. Here, we highlight an additional function for NBEA in the local delivery and surface re-insertion of synaptic receptors in mouse neurons. NBEA dynamically interacts with Rab4-positive recycling endosomes, transiently enters spines in an activity-dependent manner, and regulates GluN2B-NMDAR recycling. Furthermore, we show that the microtubule growth inhibitor kinesin KIF21B constrains NBEA dynamics and is present in the NBEA-recycling endosome-NMDAR complex. Notably, Kif21b knockout decreases NMDAR surface expression and alters social behavior in mice, consistent with reported social deficits in Nbea mutants. The influence of NBEA-KIF21B interactions on GluN2B-NMDAR local recycling may be relevant to mechanisms underlying ASD etiology.