• ADAP Promotes Degranulation and Migration of NK Cells Primed During vivo Listeria monocytogenes Infection in Mice.

      Böning, Martha A L; Trittel, Stephanie; Riese, Peggy; van Ham, Marco; Heyner, Maxi; Voss, Martin; Parzmair, Gerald P; Klawonn, Frank; Jeron, Andreas; Guzman, Carlos A; et al. (Frontiers, 2019-01-01)
      The adhesion and degranulation-promoting adaptor protein (ADAP) serves as a multifunctional scaffold and is involved in the formation of immune signaling complexes. To date only limited and moreover conflicting data exist regarding the role of ADAP in NK cells. To extend existing knowledge we investigated ADAP-dependency of NK cells in the context of in vivo infection with the intracellular pathogen Listeria monocytogenes (Lm). Ex vivo analysis of infection-primed NK cells revealed impaired cytotoxic capacity in NK cells lacking ADAP as indicated by reduced CD107a surface expression and inefficient perforin production. However, ADAP-deficiency had no global effect on NK cell morphology or intracellular distribution of CD107a-containing vesicles. Proteomic definition of ADAPko and wild type NK cells did not uncover obvious differences in protein composition during the steady state and moreover, similar early response patterns were induced in NK cells upon infection independent of the genotype. In line with protein network analyses that suggested an altered migration phenotype in naïve ADAPko NK cells, in vitro migration assays uncovered significantly reduced migration of both naïve as well as infection-primed ADAPko NK cells compared to wild type NK cells. Notably, this migration defect was associated with a significantly reduced expression of the integrin CD11a on the surface of splenic ADAP-deficient NK cells 1 day post-Lm infection. We propose that ADAP-dependent alterations in integrin expression might account at least in part for the fact that during in vivo infection significantly lower numbers of ADAPko NK cells accumulate in the spleen i.e., the site of infection. In conclusion, we show here that during systemic Lm infection in mice ADAP is essential for efficient cytotoxic capacity and migration of NK cells.
    • The Alkylquinolone Repertoire of Pseudomonas aeruginosa is Linked to Structural Flexibility of the FabH-like 2-Heptyl-3-hydroxy-4(1H)-quinolone (PQS) Biosynthesis Enzyme PqsBC.

      Witzgall, Florian; Depke, Tobias; Hoffmann, Michael; Empting, Martin; Brönstrup, Mark; Müller, Rolf; Blankenfeldt, Wulf; HZI,Helmholtz-Zentrum für Infektionsforschung GmbH, Inhoffenstr. 7,38124 Braunschweig, Germany. (Wiley-VCH, 2018-07-16)
      Pseudomonas aeruginosa is a bacterial pathogen that causes life-threatening infections in immunocompromised patients. It produces a large armory of saturated and mono-unsaturated 2-alkyl-4(1H)-quinolones (AQs) and AQ N-oxides (AQNOs) that serve as signaling molecules to control the production of virulence factors and that are involved in membrane vesicle formation and iron chelation; furthermore, they also have, for example, antibiotic properties. It has been shown that the β-ketoacyl-acyl-carrier protein synthase III (FabH)-like heterodimeric enzyme PqsBC catalyzes the last step in the biosynthesis of the most abundant AQ congener, 2-heptyl-4(1H)-quinolone (HHQ), by condensing octanoyl-coenzyme A (CoA) with 2-aminobenzoylacetate (2-ABA), but the basis for the large number of other AQs/AQNOs produced by P. aeruginosa is not known. Here, we demonstrate that PqsBC uses different medium-chain acyl-CoAs to produce various saturated AQs/AQNOs and that it also biosynthesizes mono-unsaturated congeners. Further, we determined the structures of PqsBC in four different crystal forms at 1.5 to 2.7 Å resolution. Together with a previous report, the data reveal that PqsBC adopts open, intermediate, and closed conformations that alter the shape of the acyl-binding cavity and explain the promiscuity of PqsBC. The different conformations also allow us to propose a model for structural transitions that accompany the catalytic cycle of PqsBC that might have broader implications for other FabH-enzymes, for which such structural transitions have been postulated but have never been observed.
    • CAR-T Cells Targeting Epstein-Barr Virus gp350 Validated in a Humanized Mouse Model of EBV Infection and Lymphoproliferative Disease.

      Slabik, Constanze; Kalbarczyk, Maja; Danisch, Simon; Zeidler, Reinhard; Klawonn, Frank; Volk, Valery; Krönke, Nicole; Feuerhake, Friedrich; Ferreira de Figueiredo, Constanca; Blasczyk, Rainer; et al. (Elsevier (Cell Press), 2020-08-08)
      Epstein-Barr virus (EBV) is a latent and oncogenic human herpesvirus. Lytic viral protein expression plays an important role in EBV-associated malignancies. The EBV envelope glycoprotein 350 (gp350) is expressed abundantly during EBV lytic reactivation and sporadically on the surface of latently infected cells. Here we tested T cells expressing gp350-specific chimeric antigen receptors (CARs) containing scFvs derived from two novel gp350-binding, highly neutralizing monoclonal antibodies. The scFvs were fused to CD28/CD3ζ signaling domains in a retroviral vector. The produced gp350CAR-T cells specifically recognized and killed gp350+ 293T cells in vitro. The best-performing 7A1-gp350CAR-T cells were cytotoxic against the EBV+ B95-8 cell line, showing selectivity against gp350+ cells. Fully humanized Nod.Rag.Gamma mice transplanted with cord blood CD34+ cells and infected with the EBV/M81/fLuc lytic strain were monitored dynamically for viral spread. Infected mice recapitulated EBV-induced lymphoproliferation, tumor development, and systemic inflammation. We tested adoptive transfer of autologous CD8+gp350CAR-T cells administered protectively or therapeutically. After gp350CAR-T cell therapy, 75% of mice controlled or reduced EBV spread and showed lower frequencies of EBER+ B cell malignant lymphoproliferation, lack of tumor development, and reduced inflammation. In summary, CD8+gp350CAR-T cells showed proof-of-concept preclinical efficacy against impending EBV+ lymphoproliferation and lymphomagenesis.
    • Chemical Conjugation of a Purified DEC-205-Directed Antibody with Full-Length Protein for Targeting Mouse Dendritic Cells In Vitro and In Vivo.

      Volckmar, Julia; Knop, Laura; Hirsch, Tatjana; Frentzel, Sarah; Erck, Christian; van Ham, Marco; Stegemann-Koniszewski, Sabine; Bruder, Dunja; HZI,Helmholtz-Zentrum für Infektionsforschung GmbH, Inhoffenstr. 7,38124 Braunschweig, Germany. (MyJove Corporation, 2021-02-05)
      Targeted antigen delivery to cross-presenting dendritic cells (DC) in vivo efficiently induces T effector cell responses and displays a valuable approach in vaccine design. Antigen is delivered to DC via antibodies specific for endocytosis receptors such as DEC-205 that induce uptake, processing, and MHC class I- and II-presentation. Efficient and reliable conjugation of the desired antigen to a suitable antibody is a critical step in DC targeting and among other factors depends on the format of the antigen. Chemical conjugation of full-length protein to purified antibodies is one possible strategy. In the past, we have successfully established cross-linking of the model antigen ovalbumin (OVA) and a DEC-205-specific IgG2a antibody (αDEC-205) for in vivo DC targeting studies in mice. The first step of the protocol is the purification of the antibody from the supernatant of the NLDC (non-lymphoid dendritic cells)-145 hybridoma by affinity chromatography. The purified antibody is activated for chemical conjugation by sulfo-SMCC (sulfosuccinimidyl 4-[N-maleimidomethyl] cyclohexane-1-carboxylate) while at the same time the sulfhydryl-groups of the OVA protein are exposed through incubation with TCEP-HCl (tris (2-carboxyethyl) phosphine hydrochloride). Excess TCEP-HCl and sulfo-SMCC are removed and the antigen is mixed with the activated antibody for overnight coupling. The resulting αDEC-205/OVA conjugate is concentrated and freed from unbound OVA. Successful conjugation of OVA to αDEC-205 is verified by western blot analysis and enzyme-linked immunosorbent assay (ELISA). We have successfully used chemically crosslinked αDEC-205/OVA to induce cytotoxic T cell responses in the liver and to compare different adjuvants for their potential in inducing humoral and cellular immunity following in vivo targeting of DEC-205+ DC. Beyond that, such chemically coupled antibody/antigen conjugates offer valuable tools for the efficient induction of vaccine responses to tumor antigens and have been proven to be superior to classical immunization approaches regarding the prevention and therapy of various types of tumors.
    • Clarithromycin Exerts an Antibiofilm Effect against rdar Biofilm Formation, and Transforms the Physiology towards an Apparent Oxygen-depleted Energy and Carbon Metabolism.

      Zafar, Munira; Jahan, Humera; Shafeeq, Sulman; Nimtz, Manfred; Jänsch, Lothar; Römling, Ute; Choudhary, M Iqbal; HZI,Helmholtz-Zentrum für Infektionsforschung GmbH, Inhoffenstr. 7,38124 Braunschweig, Germany. (ASM, 2020-08-24)
      Upon biofilm formation, production of extracellular matrix components and alteration in physiology and metabolism allows bacteria to build up multicellular communities which can facilitate nutrient acquisition during unfavorable conditions and provide protection towards various forms of environmental stresses to individual cells. Thus, bacterial cells become tolerant against antimicrobials and the immune system within biofilms. In the current study, we evaluated the antibiofilm activity of the macrolides clarithromycin and azithromycin. Clarithromycin showed antibiofilm activity against rdar (red, dry and rough) biofilm formation of the gastrointestinal pathogen Salmonella typhimurium ATCC14028 Nalr at 1.56 μM subinhibitory concentration in standing culture and dissolved cell aggregates at 15 μM in a microaerophilic environment suggesting that the oxygen level affects the activity of the drug. Treatment with clarithromycin significantly decreased transcription and production of the rdar biofilm activator CsgD, with biofilm genes such as csgB and adrA to be consistently downregulated. While fliA and other flagellar regulon genes were upregulated, apparent motility was downregulated. RNA sequencing showed a holistic cell response upon clarithromycin exposure, whereby not only genes involved in the biofilm-related regulatory pathways, but also genes that likely contribute to intrinsic antimicrobial resistance, and the heat shock stress response were differentially regulated. Most significantly, clarithromycin exposure shifts the cells towards an apparent oxygen- and energy- depleted status, whereby the metabolism that channels into oxidative phosphorylation is downregulated, and energy gain by degradation of propane 1,2-diol, ethanolamine and L-arginine catabolism, potentially also to prevent cytosolic, is upregulated. This analysis will allow the subsequent identification of novel intrinsic antimicrobial resistance determinants.
    • Common pre-diagnostic features in individuals with different rare diseases represent a key for diagnostic support with computerized pattern recognition?

      Grigull, Lorenz; Mehmecke, Sandra; Rother, Ann-Katrin; Blöß, Susanne; Klemann, Christian; Schumacher, Ulrike; Mücke, Urs; Kortum, Xiaowei; Lechner, Werner; Klawonn, Frank; et al. (Public Library of Science (PLoS), 2019-10-10)
      BACKGROUND: Rare diseases (RD) result in a wide variety of clinical presentations, and this creates a significant diagnostic challenge for health care professionals. We hypothesized that there exist a set of consistent and shared phenomena among all individuals affected by (different) RD during the time before diagnosis is established. OBJECTIVE: We aimed to identify commonalities between different RD and developed a machine learning diagnostic support tool for RD. METHODS: 20 interviews with affected individuals with different RD, focusing on the time period before their diagnosis, were performed and qualitatively analyzed. Out of these pre-diagnostic experiences, we distilled key phenomena and created a questionnaire which was then distributed among individuals with the established diagnosis of i.) RD, ii.) other common non-rare diseases (NRO) iii.) common chronic diseases (CD), iv.), or psychosomatic/somatoform disorders (PSY). Finally, four combined single machine learning methods and a fusion algorithm were used to distinguish the different answer patterns of the questionnaires. RESULTS: The questionnaire contained 53 questions. A total sum of 1763 questionnaires (758 RD, 149 CD, 48 PSY, 200 NRO, 34 healthy individuals and 574 not evaluable questionnaires) were collected. Based on 3 independent data sets the 10-fold stratified cross-validation method for the answer-pattern recognition resulted in sensitivity values of 88.9% to detect the answer pattern of a RD, 86.6% for NRO, 87.7% for CD and 84.2% for PSY. CONCLUSION: Despite the great diversity in presentation and pathogenesis of each RD, patients with RD share surprisingly similar pre-diagnosis experiences. Our questionnaire and data-mining based approach successfully detected unique patterns in groups of individuals affected by a broad range of different rare diseases. Therefore, these results indicate distinct patterns that may be used for diagnostic support in RD.
    • Crystal structure of bacterial cytotoxic necrotizing factor CNFy reveals molecular building blocks for intoxication.

      Chaoprasid, Paweena; Lukat, Peer; Mühlen, Sabrina; Heidler, Thomas; Gazdag, Emerich-Mihai; Dong, Shuangshuang; Bi, Wenjie; Rüter, Christian; Kirchenwitz, Marco; Steffen, Anika; et al. (Springer, 2021-01-07)
      Cytotoxic necrotizing factors (CNFs) are bacterial single-chain exotoxins that modulate cytokinetic/oncogenic and inflammatory processes through activation of host cell Rho GTPases. To achieve this, they are secreted, bind surface receptors to induce endocytosis and translocate a catalytic unit into the cytosol to intoxicate host cells. A three-dimensional structure that provides insight into the underlying mechanisms is still lacking. Here, we determined the crystal structure of full-length Yersinia pseudotuberculosis CNFY . CNFY consists of five domains (D1-D5), and by integrating structural and functional data, we demonstrate that D1-3 act as export and translocation module for the catalytic unit (D4-5) and for a fused β-lactamase reporter protein. We further found that D4, which possesses structural similarity to ADP-ribosyl transferases, but had no equivalent catalytic activity, changed its position to interact extensively with D5 in the crystal structure of the free D4-5 fragment. This liberates D5 from a semi-blocked conformation in full-length CNFY , leading to higher deamidation activity. Finally, we identify CNF translocation modules in several uncharacterized fusion proteins, which suggests their usability as a broad-specificity protein delivery tool.
    • Data Analysis Strategies for Microbiome Studies in Human Populations-a Systematic Review of Current Practice.

      Kleine Bardenhorst, Sven; Berger, Tom; Klawonn, Frank; Vital, Marius; Karch, André; Rübsamen, Nicole; HZI,Helmholtz-Zentrum für Infektionsforschung GmbH, Inhoffenstr. 7,38124 Braunschweig, Germany. (ASM, 2021-02-23)
      Reproducibility is a major issue in microbiome studies, which is partly caused by missing consensus about data analysis strategies. The complex nature of microbiome data, which are high-dimensional, zero-inflated, and compositional, makes them challenging to analyze, as they often violate assumptions of classic statistical methods. With advances in human microbiome research, research questions and study designs increase in complexity so that more sophisticated data analysis concepts are applied. To improve current practice of the analysis of microbiome studies, it is important to understand what kind of research questions are asked and which tools are used to answer these questions. We conducted a systematic literature review considering all publications focusing on the analysis of human microbiome data from June 2018 to June 2019. Of 1,444 studies screened, 419 fulfilled the inclusion criteria. Information about research questions, study designs, and analysis strategies were extracted. The results confirmed the expected shift to more advanced research questions, as one-third of the studies analyzed clustered data. Although heterogeneity in the methods used was found at any stage of the analysis process, it was largest for differential abundance testing. Especially if the underlying data structure was clustered, we identified a lack of use of methods that appropriately addressed the underlying data structure while taking into account additional dependencies in the data. Our results confirm considerable heterogeneity in analysis strategies among microbiome studies; increasingly complex research questions require better guidance for analysis strategies.IMPORTANCE The human microbiome has emerged as an important factor in the development of health and disease. Growing interest in this topic has led to an increasing number of studies investigating the human microbiome using high-throughput sequencing methods. However, the development of suitable analytical methods for analyzing microbiome data has not kept pace with the rapid progression in the field. It is crucial to understand current practice to identify the scope for development. Our results highlight the need for an extensive evaluation of the strengths and shortcomings of existing methods in order to guide the choice of proper analysis strategies. We have identified where new methods could be designed to address more advanced research questions while taking into account the complex structure of the data.
    • Development of a data generator for multivariate numerical data with arbitrary correlations and distributions

      Vahldiek, Kai; Zhou, Libing; Zhu, Wenfeng; Klawonn, Frank; HZI,Helmholtz-Zentrum für Infektionsforschung GmbH, Inhoffenstr. 7,38124 Braunschweig, Germany. (IOS Press, 2021-01-01)
      Artificial or simulated data are particularly relevant in tests and benchmarks for machine learning methods, in teaching for exercises and for setting up analysis workflows. They are relevant when real data may not be used for reasons of data protection, or when special distributions or effects should be present in the data to test certain machine learning methods. In this paper a generator for multivariate numerical data with arbitrary marginal distributions and – as far as possible – arbitrary correlations is presented. The data generator is implemented in the open source statistics software R. It can also be used for categorical variables, if data are generated separately for the corresponding characteristics of a categorical variable. Additionally, outliers can be integrated. The use of the data generator is demonstrated with a concrete example.
    • Development of a Social Network for People Without a Diagnosis (RarePairs): Evaluation Study.

      Kühnle, Lara; Mücke, Urs; Lechner, Werner M; Klawonn, Frank; Grigull, Lorenz; HZI,Helmholtz-Zentrum für Infektionsforschung GmbH, Inhoffenstr. 7,38124 Braunschweig, Germany. (JMIR publications, 2020-09-29)
      Background: Diagnostic delay in rare disease (RD) is common, occasionally lasting up to more than 20 years. In attempting to reduce it, diagnostic support tools have been studied extensively. However, social platforms have not yet been used for systematic diagnostic support. This paper illustrates the development and prototypic application of a social network using scientifically developed questions to match individuals without a diagnosis. Objective: The study aimed to outline, create, and evaluate a prototype tool (a social network platform named RarePairs), helping patients with undiagnosed RDs to find individuals with similar symptoms. The prototype includes a matching algorithm, bringing together individuals with similar disease burden in the lead-up to diagnosis. Methods: We divided our project into 4 phases. In phase 1, we used known data and findings in the literature to understand and specify the context of use. In phase 2, we specified the user requirements. In phase 3, we designed a prototype based on the results of phases 1 and 2, as well as incorporating a state-of-the-art questionnaire with 53 items for recognizing an RD. Lastly, we evaluated this prototype with a data set of 973 questionnaires from individuals suffering from different RDs using 24 distance calculating methods. Results: Based on a step-by-step construction process, the digital patient platform prototype, RarePairs, was developed. In order to match individuals with similar experiences, it uses answer patterns generated by a specifically designed questionnaire (Q53). A total of 973 questionnaires answered by patients with RDs were used to construct and test an artificial intelligence (AI) algorithm like the k-nearest neighbor search. With this, we found matches for every single one of the 973 records. The cross-validation of those matches showed that the algorithm outperforms random matching significantly. Statistically, for every data set the algorithm found at least one other record (match) with the same diagnosis. Conclusions: Diagnostic delay is torturous for patients without a diagnosis. Shortening the delay is important for both doctors and patients. Diagnostic support using AI can be promoted differently. The prototype of the social media platform RarePairs might be a low-threshold patient platform, and proved suitable to match and connect different individuals with comparable symptoms. This exchange promoted through RarePairs might be used to speed up the diagnostic process. Further studies include its evaluation in a prospective setting and implementation of RarePairs as a mobile phone app.
    • Dinoroseobacter shibae Outer Membrane Vesicles Are Enriched for the Chromosome Dimer Resolution Site dif.

      Wang, Hui; Beier, Nicole; Boedeker, Christian; Sztajer, Helena; Henke, Petra; Neumann-Schaal, Meina; Mansky, Johannes; Rohde, Manfred; Overmann, Jörg; Petersen, Jörn; et al. (American Society for Microbiology, 2021-01-12)
      Outer membrane vesicles (OMVs) are universally produced by prokaryotes and play important roles in symbiotic and pathogenic interactions. They often contain DNA, but a mechanism for its incorporation is lacking. Here, we show that Dinoroseobacter shibae, a dinoflagellate symbiont, constitutively secretes OMVs containing DNA. Time-lapse microscopy captured instances of multiple OMV production at the septum during cell division. DNA from the vesicle lumen was up to 22-fold enriched for the region around the terminus of replication (ter). The peak of coverage was located at dif, a conserved 28-bp palindromic sequence required for binding of the site-specific tyrosine recombinases XerC/XerD. These enzymes are activated at the last stage of cell division immediately prior to septum formation when they are bound by the divisome protein FtsK. We suggest that overreplicated regions around the terminus have been repaired by the FtsK-dif-XerC/XerD molecular machinery. The vesicle proteome was clearly dominated by outer membrane and periplasmic proteins. Some of the most abundant vesicle membrane proteins were predicted to be required for direct interaction with peptidoglycan during cell division (LysM, Tol-Pal, Spol, lytic murein transglycosylase). OMVs were 15-fold enriched for the saturated fatty acid 16:00. We hypothesize that constitutive OMV secretion in D. shibae is coupled to cell division. The footprint of the FtsK-dif-XerC/XerD molecular machinery suggests a novel potentially highly conserved route for incorporation of DNA into OMVs. Clearing the division site from small DNA fragments might be an important function of vesicles produced during exponential growth under optimal conditions.IMPORTANCE Gram-negative bacteria continually form vesicles from their outer membrane (outer membrane vesicles [OMVs]) during normal growth. OMVs frequently contain DNA, and it is unclear how DNA can be shuffled from the cytoplasm to the OMVs. We studied OMV cargo in Dinoroseobacter shibae, a symbiont of dinoflagellates, using microscopy and a multi-omics approach. We found that vesicles formed during undisturbed exponential growth contain DNA which is enriched for genes around the replication terminus, specifically, the binding site for an enzyme complex that is activated at the last stage of cell division. We suggest that the enriched genes are the result of overreplication which is repaired by their excision and excretion via membrane vesicles to clear the divisome from waste DNA.
    • Effect of a strict hygiene bundle for the prevention of nosocomial transmission of SARS-CoV-2 in the hospital: a practical approach from the field.

      Ambrosch, Andreas; Rockmann, Felix; Klawonn, Frank; Lampl, Benedikt; HZI,Helmholtz-Zentrum für Infektionsforschung GmbH, Inhoffenstr. 7,38124 Braunschweig, Germany. (Elsevier, 2020-10-20)
      Background: During the novel coronavirus disease (COVID-19) pandemic it is crucial for hospitals to implement infection prevention strategies to reduce nosocomial transmission to the lowest possible number. This is all the more important because molecular tests for identifying SARS-CoV-2 infected patients are uncertain, and the resources available for them are limited. In this view, a monocentric, retrospective study with an interventional character was conducted to investigate the extent to which the introduction of a strict hygiene bundle including a general mask requirement and daily screening for suspicious patients has an impact on the SARS-CoV-2 nosocomial rate in the pandemic environment. Methods: All inpatients from a maximum care hospital in Regensburg (Bavaria) between March 1st and June 10th 2020 were included. Patient with respiratory symptoms were tested for SARS-CoV-2 at admission, patients were managed according to a standard hygiene protocol. At the end of March a strict hygiene bundle was introduced including a general mask obligation and a daily clinical screening of inpatients for respiratory symptoms. Nosocomial infection rate for COVID-19 and the risk for infection transmission estimated by the nosocomial incidence density before and after introduction the hygiene bundle were compared. The infection pressure for the hospital during the entire observational period was characterized by the infection reports in the region in relation to the number of hospitalized COVID-19 patients and the number of infected employees. Results: In fact, after the introduction of a strict hygiene bundle including a general mouth and nose protection obligation and a daily clinical screening of suspicious patients, a significant reduction of the nosocomial rate from 0.28 to 0.06 (p = 0.026) was observed. Furthermore, the risk of spreading hospital-acquired infections also decreased dramatically from 0.0007 to 0.00018 (p = 0.031; rate ratio after/before 0.25 (95%CI 0.06, 1.07) despite a slow decrease of the hospital COVID 19-prevalence and an increase of infected employees. Conclusion: The available data underline that a strict hygiene bundle seem to be associated with a decrease of nosocomial SARS-CoV-2 transmission in the pandemic situation.
    • External quality assessment schemes for glucose measurements in Germany: factors for successful participation, analytical performance and medical impact.

      Bietenbeck, Andreas; Geilenkeuser, Wolf J; Klawonn, Frank; Spannagl, Michael; Nauck, Matthias; Petersmann, Astrid; Thaler, Markus A; Winter, Christof; Luppa, Peter B; HZI,Helmholtz-Zentrum für Infektionsforschung GmbH, Inhoffenstr. 7,38124 Braunschweig, Germany. (2018-07-26)
      Determination of blood glucose concentration is one of the most important measurements in clinical chemistry worldwide. Analyzers in central laboratories (CL) and point-of-care tests (POCT) are both frequently used. In Germany, regular participation in external quality assessment (EQA) schemes is mandatory for laboratories performing glucose testing. Glucose testing data from the two German EQAs "Reference Institute for Bioanalytics" (RfB) and "INSTAND - Gesellschaft zur Förderung der Qualitätssicherung in medizinischen Laboratorien" (Instand) were analyzed from 2012 to 2016. Multivariable odds ratios (OR) for the probability to reach a "good" result were calculated. Imprecision and bias were determined and clinical risk of measurement errors estimated. The device employed was the most important variable required for a "good" performance in all EQAs. Additional participation in an EQA for CL automated analyzers improved performance in POCT EQAs. The reciprocal effect was less pronounced. New participants performed worse than experienced participants especially in CL EQAs. Imprecision was generally smaller for CL, but some POCT devices reached a comparable performance. Large lot-to-lot differences occurred in over 10% of analyzed cases. We propose the "bias budget" as a new metric to express the maximum allowable bias that still carries acceptable medical risk. Bias budgets were smallest and clinical risks of errors greatest in the low range of measurement 60-115 mg/dL (3.3-6.4 mmol/L) for most devices. EQAs help to maintain high analytical performances. They generate important data that serve as the foundation for learning and improvement in the laboratory healthcare system.
    • Human-Relevant Sensitivity of iPSC-Derived Human Motor Neurons to BoNT/A1 and B1.

      Schenke, Maren; Prause, Hélène-Christine; Bergforth, Wiebke; Przykopanski, Adina; Rummel, Andreas; Klawonn, Frank; Seeger, Bettina; HZI,Helmholtz-Zentrum für Infektionsforschung GmbH, Inhoffenstr. 7,38124 Braunschweig, Germany. (MDPI, 2021-08-22)
      The application of botulinum neurotoxins (BoNTs) for medical treatments necessitates a potency quantification of these lethal bacterial toxins, resulting in the use of a large number of test animals. Available alternative methods are limited in their relevance, as they are based on rodent cells or neuroblastoma cell lines or applicable for single toxin serotypes only. Here, human motor neurons (MNs), which are the physiological target of BoNTs, were generated from induced pluripotent stem cells (iPSCs) and compared to the neuroblastoma cell line SiMa, which is often used in cell-based assays for BoNT potency determination. In comparison with the mouse bioassay, human MNs exhibit a superior sensitivity to the BoNT serotypes A1 and B1 at levels that are reflective of human sensitivity. SiMa cells were able to detect BoNT/A1, but with much lower sensitivity than human MNs and appear unsuitable to detect any BoNT/B1 activity. The MNs used for these experiments were generated according to three differentiation protocols, which resulted in distinct sensitivity levels. Molecular parameters such as receptor protein concentration and electrical activity of the MNs were analyzed, but are not predictive for BoNT sensitivity. These results show that human MNs from several sources should be considered in BoNT testing and that human MNs are a physiologically relevant model, which could be used to optimize current BoNT potency testing.
    • Improving the Decision Support in Diagnostic Systems using Classifier Probability Calibration

      Kortum, Xiaowei; Grigull, Lorenz; Lechner, Werner; Klawonn, Frank; HZI,Helmholtz-Zentrum für Infektionsforschung GmbH, Inhoffenstr. 7,38124 Braunschweig, Germany. (Springer, 2018-11-09)
      In modern medical diagnoses, classifying a patient’s disease is often realized with the help of a system-aided symptoms interpreter. Most of these systems rely on supervised learning algorithms, which can statistically extend the doctor’s logic capabilities for interpreting and examining symptoms, thus supporting the doctor to find the correct diagnosis. Besides, these algorithms compute classifier scores and class labels that are used to statistically characterize the system’s confidence level on a patient’s type of disease. Unfortunately, most classifier scores are based on an arbitrary scale but not uniformed, thus the interpretations often lack of clinical significance and evaluation criterion. Especially combining multiple classifier scores within a diagnostic system, it is essential to apply a calibration process to make the different scores comparable. As a frequently used calibration technique, we adapted isotonic regression for our medical diagnostic support system, to provide a flexible and effective scaling process that consequently calibrates the arbitrary scales of classifiers’ scores. In a comparative evaluation, we show that our disease diagnostic system with isotonic regression can actively improve the diagnostic result based on an ensemble of classifiers, also effectively remove outliers from data, thus optimize the decision support system to obtain better diagnostic results.
    • In Vivo Lentiviral Gene Delivery of HLA-DR and Vaccination of Humanized Mice for Improving the Human T and B Cell Immune Reconstitution.

      Kumar, Suresh; Koenig, Johannes; Schneider, Andreas; Wermeling, Fredrik; Boddul, Sanjaykumar; Theobald, Sebastian J; Vollmer, Miriam; Kloos, Doreen; Lachmann, Nico; Klawonn, Frank; et al. (MDPI, 2021-08-05)
      Humanized mouse models generated with human hematopoietic stem cells (HSCs) and reconstituting the human immune system (HIS-mice) are invigorating preclinical testing of vaccines and immunotherapies. We have recently shown that human engineered dendritic cells boosted bonafide human T and B cell maturation and antigen-specific responses in HIS-mice. Here, we evaluated a cell-free system based on in vivo co-delivery of lentiviral vectors (LVs) for expression of a human leukocyte antigen (HLA-DRA*01/ HLA-DRB1*0401 functional complex, "DR4"), and a LV vaccine expressing human cytokines (GM-CSF and IFN-α) and a human cytomegalovirus gB antigen (HCMV-gB). Humanized NOD/Rag1null/IL2Rγnull (NRG) mice injected by i.v. with LV-DR4/fLuc showed long-lasting (up to 20 weeks) vector distribution and expression in the spleen and liver. In vivo administration of the LV vaccine after LV-DR4/fLuc delivery boosted the cellularity of lymph nodes, promoted maturation of terminal effector CD4+ T cells, and promoted significantly higher development of IgG+ and IgA+ B cells. This modular lentigenic system opens several perspectives for basic human immunology research and preclinical utilization of LVs to deliver HLAs into HIS-mice.
    • Induced B Cell Development in Adult Mice.

      Brennecke, Anne-Margarete; Düber, Sandra; Roy, Bishnudeo; Thomsen, Irene; Garbe, Annette I; Klawonn, Frank; Pabst, Oliver; Kretschmer, Karsten; Weiss, Siegfried; HZI,Helmholtz-Zentrum für Infektionsforschung GmbH, Inhoffenstr. 7,38124 Braunschweig, Germany. (2018-01-01)
      We employed the B-Indu-Rag1 model in which the coding exon of recombination-activating gene 1 (Rag1) is inactivated by inversion. It is flanked by inverted loxP sites. Accordingly, B cell development is stopped at the pro/pre B-I cell precursor stage. A B cell-specific Cre recombinase fused to a mutated estrogen receptor allows the induction of RAG1 function and B cell development by application of Tamoxifen. Since Rag1 function is recovered in a non-self-renewing precursor cell, only single waves of development can be induced. Using this system, we could determine that B cells minimally require 5 days to undergo development from pro/preB-I cells to the large and 6 days to the small preB-II cell stage. First immature transitional (T) 1 and T2 B cells could be detected in the bone marrow at day 6 and day 7, respectively, while their appearance in the spleen took one additional day. We also tested a contribution of adult bone marrow to the pool of B-1 cells. Sublethally irradiated syngeneic WT mice were adoptively transferred with bone marrow of B-Indu-Rag1 mice and B cell development was induced after 6 weeks. A significant portion of donor derived B-1 cells could be detected in such adult mice. Finally, early VH gene usage was tested after induction of B cell development. During the earliest time points the VH genes proximal to D/J were found to be predominantly rearranged. At later time points, the large family of the most distal VH prevailed.
    • Künstliche Intelligenz zur diagnostischen Unterstützung ausgewählter seltener lysosomaler Speichererkrankungen: Ergebnisse einer Pilotstudie.

      Sieg, Anna-Lena; Anibh, Martin; Muschol, Nicole Maria; Köhn, Anja; Lampe, Christina; Kortum, Xiauwei; Mehmecke, Sandra; Blöß, Susanne; Lechner, Werner; Klawonn, Frank; et al. (Thieme, 2019-02-10)
      Hintergrund: Die Diagnosestellung einer seltenen Stoffwechselerkrankung stellt eine Herausforderung für Familien und betreuende Ärzte dar. Um den Weg zur Diagnose zu unterstützen, wurde ein diagnostisches Werkzeug entwickelt, welches die Erfahrungen Betroffener nutzt.
    • Letter to the editor by Winter et al.: Reply

      Hoffmann, Georg E.; Klawonn, Frank; Orth, Matthias; Lichtinghagen, Ralf; HZI,Helmholtz-Zentrum für Infektionsforschung GmbH, Inhoffenstr. 7,38124 Braunschweig, Germany. (De Gruyter, 2018-04-03)
    • Methicillin-resistant Staphylococcus pseudintermedius synthesizes deoxyadenosine to cause persistent infection.

      Bünsow, Dorothea; Tantawy, Eshraq; Ostermeier, Tjorven; Bähre, Heike; Garbe, Annette; Larsen, Jesper; Winstel, Volker; HZI,Helmholtz-Zentrum für Infektionsforschung GmbH, Inhoffenstr. 7,38124 Braunschweig, Germany. (Taylor & Francis, 2021-03-29)
      Methicillin-resistant Staphylococcus pseudintermedius (MRSP) is an emerging zoonotic pathogen of canine origin that causes an array of fatal diseases, including bacteremia and endocarditis. Despite large-scale genome sequencing projects have gained substantial insights into the genomic landscape of MRSP, current knowledge on virulence determinants that contribute to S. pseudintermedius pathogenesis during human or canine infection is very limited. Using a panel of genetically engineered MRSP variants and a mouse abscess model, we here identified the major secreted nuclease of S. pseudintermedius designated NucB and adenosine synthase A (AdsA) as two synergistically acting enzymes required for MRSP pathogenesis. Similar to Staphylococcus aureus, S. pseudintermedius requires nuclease secretion along with the activity of AdsA to degrade mammalian DNA for subsequent biosynthesis of cytotoxic deoxyadenosine. In this manner, S. pseudintermedius selectively kills macrophages during abscess formation thereby antagonizing crucial host immune cell responses. Ultimately, bioinformatics analyses revealed that NucB and AdsA are widespread in the global S. pseudintermedius population. Together, these data suggest that S. pseudintermedius deploys the canonical Nuc/AdsA pathway to persist during invasive disease and may aid in the development of new therapeutic strategies to combat infections caused by MRSP.