• Analysis of Practical Identifiability of a Viral Infection Model.

      Nguyen, Van Kinh; Klawonn, Frank; Mikolajczyk, Rafael; Hernandez-Vargas, Esteban Abelardo; Helmholtz Centre for infection research, Inhoffenstr. 7, 38124 Braunschweig, Germany. (2016)
      Mathematical modelling approaches have granted a significant contribution to life sciences and beyond to understand experimental results. However, incomplete and inadequate assessments in parameter estimation practices hamper the parameter reliability, and consequently the insights that ultimately could arise from a mathematical model. To keep the diligent works in modelling biological systems from being mistrusted, potential sources of error must be acknowledged. Employing a popular mathematical model in viral infection research, existing means and practices in parameter estimation are exemplified. Numerical results show that poor experimental data is a main source that can lead to erroneous parameter estimates despite the use of innovative parameter estimation algorithms. Arbitrary choices of initial conditions as well as data asynchrony distort the parameter estimates but are often overlooked in modelling studies. This work stresses the existence of several sources of error buried in reports of modelling biological systems, voicing the need for assessing the sources of error, consolidating efforts in solving the immediate difficulties, and possibly reconsidering the use of mathematical modelling to quantify experimental data.
    • Assessment of cross-species transmission of hepatitis C virus-related non-primate hepacivirus in a population of humans at high risk of exposure.

      Pfaender, Stephanie; Walter, Stephanie; Todt, Daniel; Behrendt, Patrick; Doerrbecker, Juliane; Wölk, Benno; Engelmann, Michael; Gravemann, Ute; Seltsam, Axel; Steinmann, Joerg; et al. (2015-09)
      The recent discovery of hepatitis C virus (HCV)-related viruses in different animal species has raised new speculations regarding the origin of HCV and the possibility of a zoonotic source responsible for the endemic HCV transmission. As a consequence, these new findings prompt questions regarding the potential for cross-species transmissions of hepaciviruses. The closest relatives to HCV discovered to date are the non-primate hepaciviruses (NPHVs), which have been described to infect horses. To evaluate the risk of a potential zoonotic transmission, we analysed NPHV RNA and antibodies in humans with occupational exposure to horses in comparison with a low-risk group. Both groups were negative for NPHV RNA, even though low seroreactivities against various NPHV antigens could be detected irrespective of the group. In conclusion, we did not observe evidence of NPHV transmission between horses and humans.
    • Carbonic anhydrase subunits form a matrix-exposed domain attached to the membrane arm of mitochondrial complex I in plants.

      Sunderhaus, Stephanie; Dudkina, Natalya V; Jänsch, Lothar; Klodmann, Jennifer; Heinemeyer, Jesco; Perales, Mariano; Zabaleta, Eduardo; Boekema, Egbert J; Braun, Hans-Peter; Institut für Angewandte Genetik, Universität Hannover, Herrenhäuser Strasse 2, D-30419 Hannover, Germany. (2006-03-10)
      Complex I of Arabidopsis includes five structurally related subunits representing gamma-type carbonic anhydrases termed CA1, CA2, CA3, CAL1, and CAL2. The position of these subunits within complex I was investigated. Direct analysis of isolated subcomplexes of complex I by liquid chromatography linked to tandem mass spectrometry allowed the assignment of the CA subunits to the membrane arm of complex I. Carbonate extraction experiments revealed that CA2 is an integral membrane protein that is protected upon protease treatment of isolated mitoplasts, indicating a location on the matrix-exposed side of the complex. A structural characterization by single particle electron microscopy of complex I from the green alga Polytomella and a previous analysis from Arabidopsis indicate a plant-specific spherical extra-domain of about 60 A in diameter, which is attached to the central part of the membrane arm of complex I on its matrix face. This spherical domain is proposed to contain a heterotrimer of three CA subunits, which are anchored with their C termini to the hydrophobic arm of complex I. Functional implications of the complex I-integrated CA subunits are discussed.
    • Case-Centred Multidimensional Scaling for Classification Visualisation in Medical Diagnosis

      Klawonn, Frank; Lechner, Werner M.; Grigull, Lorenz; Bioinformatics and Statistics, Helmholtz Centre for Infection Research, Inhoffenstr. 7, D-38124 Braunschweig, Germany (2013-03)
    • Chronic lung inflammation primes humoral immunity and augments antipneumococcal resistance.

      Boehme, Julia D; Stegemann-Koniszewski, Sabine; Autengruber, Andrea; Peters, Nicole; Wissing, Josef; Jänsch, Lothar; Jeron, Andreas; Bruder, Dunja; Helmholtz-Zentrum für Infektionsforschung GmbH, Inhoffenstr. 7, 38124 Braunschweig, Germany. (2017-07-10)
      Airway epithelial cells (AECs) display remarkable plasticity in response to infectious stimuli and their functional adaptations are critical for antimicrobial immunity. However, the roles of AECs and humoral mediators to host defense in non-communicable lung inflammation remain elusive. We dissected pulmonary defense against Streptococcus pneumoniae in hosts with pre-existing inflammatory conditions (SPC-HAxTCR-HA mice). Lung tissue transcriptomics and bronchoalveolar lavage fluid (BALF) proteomics revealed an induction of humoral defense mechanisms in inflamed lungs. Accordingly, besides antibacterial proteins and complement components being overrepresented in inflamed lungs, elevated polymeric immunoglobulin receptor (pIgR)-expression in AECs correlated with increased secretory immunoglobulin (SIg) transport. Consequently, opsonization assays revealed augmented pneumococcal coverage by SIgs present in the BALF of SPC-HAxTCR-HA mice, which was associated with enhanced antipneumococcal resistance. These findings emphasize the immunologic potential of AECs as well as their central role in providing antibacterial protection and put forward pIgR as potential target for therapeutic manipulation in infection-prone individuals.
    • Chronic Toxoplasma infection is associated with distinct alterations in the synaptic protein composition.

      Lang, Daniel; Schott, Björn H; van Ham, Marco; Morton, Lorena; Kulikovskaja, Leonora; Herrera-Molina, Rodrigo; Pielot, Rainer; Klawonn, Frank; Montag, Dirk; Jänsch, Lothar; et al. (2018-08-01)
      Chronic infection with the neurotropic parasite Toxoplasma gondii has been implicated in the risk for several neuropsychiatric disorders. The mechanisms, by which the parasite may alter neural function and behavior of the host, are not yet understood completely. Here, a novel proteomic approach using mass spectrometry was employed to investigate the alterations in synaptic protein composition in a murine model of chronic toxoplasmosis. In a candidate-based strategy, immunoblot analysis and immunohistochemistry were applied to investigate the expression levels of key synaptic proteins in glutamatergic signaling. A comparison of the synaptosomal protein composition revealed distinct changes upon infection, with multiple proteins such as EAAT2, Shank3, AMPA receptor, and NMDA receptor subunits being downregulated, whereas inflammation-related proteins showed an upregulation. Treatment with the antiparasitic agent sulfadiazine strongly reduced tachyzoite levels and diminished neuroinflammatory mediators. However, in both conditions, a significant number of latent cysts persisted in the brain. Conversely, infection-related alterations of key synaptic protein levels could be partly reversed by the treatment. These results provide evidence for profound changes especially in synaptic protein composition in T. gondii-infected mice with a downregulation of pivotal components of glutamatergic neurotransmission. Our results suggest that the detected synaptic alterations are a consequence of the distinct neuroinflammatory milieu caused by the neurotropic parasite.
    • Collection and analysis of salivary proteins from the biting midge Culicoides nubeculosus (Diptera: Ceratopogonidae).

      Langner, Kathrin F A; Darpel, Karin E; Denison, Eric; Drolet, Barbara S; Leibold, Wolfgang; Mellor, Philip S; Mertens, Peter P C; Nimtz, Manfred; Greiser-Wilke, Irene; USDA-ARS, Arthropod-Borne Animal Diseases Research Laboratory, 1000 E. University Ave., Laramie, WY 82071, USA. klangner@uwyo.edu (2007-03)
      Salivary proteins of hematophagous Culicoides spp. are thought to play an important role in pathogen transmission and skin hypersensitivity. Analysis of these proteins, however, has been problematic due to the difficulty in obtaining adequate amounts of secreted Culicoides saliva. In the current study, a collection method for midge saliva was developed. Over a 3-d period, 3- to 5-d-old male and female Culicoides nubeculosus Meigen (Diptera: Ceratopogonidae) were repeatedly placed onto the collection system and allowed to deposit saliva into a filter. Salivary products were eluted from the filters and evaluated by gel electrophoresis and mass spectrometry as well as by intradermal testing and determination of clotting time. Gel electrophoresis revealed approximately 55 protein spots displaying relative molecular masses from 5 to 67 kDa and isoelectric points ranging from 4.5 to 9.8. The majority of molecular species analyzed by mass spectrometry showed high convergence with salivary proteins recently obtained from a cDNA library of Culicoides sonorensis Wirth & Jones, including proteins involved in sugarmeal digestion, defense, and coagulation inhibition as well as members of the D7 family and unclassified salivary proteins. In addition, the proteome analysis revealed a number of peptides that were related to proteins from insect species other than Culicoides. Intradermal injection of the saliva in human skin produced edema, vasodilatation, and pruritus. The anticoagulant activity of the saliva was demonstrated by significantly prolonged clotting times for human platelets. The potential role of the identified salivary proteins in the transmission of pathogens and the induction of allergies is discussed.
    • Common pre-diagnostic features in individuals with different rare diseases represent a key for diagnostic support with computerized pattern recognition?

      Grigull, Lorenz; Mehmecke, Sandra; Rother, Ann-Katrin; Blöß, Susanne; Klemann, Christian; Schumacher, Ulrike; Mücke, Urs; Kortum, Xiaowei; Lechner, Werner; Klawonn, Frank; et al. (Public Library of Science (PLoS), 2019-10-10)
      BACKGROUND: Rare diseases (RD) result in a wide variety of clinical presentations, and this creates a significant diagnostic challenge for health care professionals. We hypothesized that there exist a set of consistent and shared phenomena among all individuals affected by (different) RD during the time before diagnosis is established. OBJECTIVE: We aimed to identify commonalities between different RD and developed a machine learning diagnostic support tool for RD. METHODS: 20 interviews with affected individuals with different RD, focusing on the time period before their diagnosis, were performed and qualitatively analyzed. Out of these pre-diagnostic experiences, we distilled key phenomena and created a questionnaire which was then distributed among individuals with the established diagnosis of i.) RD, ii.) other common non-rare diseases (NRO) iii.) common chronic diseases (CD), iv.), or psychosomatic/somatoform disorders (PSY). Finally, four combined single machine learning methods and a fusion algorithm were used to distinguish the different answer patterns of the questionnaires. RESULTS: The questionnaire contained 53 questions. A total sum of 1763 questionnaires (758 RD, 149 CD, 48 PSY, 200 NRO, 34 healthy individuals and 574 not evaluable questionnaires) were collected. Based on 3 independent data sets the 10-fold stratified cross-validation method for the answer-pattern recognition resulted in sensitivity values of 88.9% to detect the answer pattern of a RD, 86.6% for NRO, 87.7% for CD and 84.2% for PSY. CONCLUSION: Despite the great diversity in presentation and pathogenesis of each RD, patients with RD share surprisingly similar pre-diagnosis experiences. Our questionnaire and data-mining based approach successfully detected unique patterns in groups of individuals affected by a broad range of different rare diseases. Therefore, these results indicate distinct patterns that may be used for diagnostic support in RD.
    • Degradable magnesium implant-associated infections by bacterial biofilms induce robust localized and systemic inflammatory reactions in a mouse model.

      Rahim, Muhammad Imran; Babbar, Anshu; Lienenklaus, Stefan; Pils, Marina; Rohde, M; Helmholtz Centre for infection research, Inhoffenstr. 7, 38124 Braunschweig, Germany. (2017-06-01)
      Biomaterial-associated Pseudomonas aeruginosa biofilm infections constitute cascade of host immune reactions ultimately leading towards implant failure. Due to lack of relevant in vivo biofilm models, majority of the studies report host immune responses against free living or planktonic bacteria while bacteria in clinical situations live more frequently as biofilm communities than as single cells. Present study investigated host immune responses against biomaterial-associated P. aeruginosa biofilms in a clinically relevant mouse model. Previously, we reported metallic magnesium, a prospective biodegradable implant, to be permissive for bacterial biofilms in vivo even though it exhibits antibacterial properties in vitro. Therefore, magnesium was employed as biomaterial to investigate in vivo biofilm formation and associated host immune responses by using two P. aeruginosa strains and two mouse strains. P. aeruginosa formed biofilms on subcutaneously implanted magnesium discs. Non-invasive in vivo imaging indicated transient inflammatory responses at control sites whereas robust prolonged interferon-β (IFN-β) expression was observed from biofilms in a transgenic animal reporter. Further, immunohistology and electron microscopic results showed that bacterial biofilms were located in two dimensions immediately on the implant surface and at a short distance in the adjacent tissue. These biofilms were surrounded by inflammatory cells (mainly polymorphonuclear cells) as compared to controls. Interestingly, even though the number of live bacteria in various organs remained below detectable levels, splenomegaly indicated systemic inflammatory processes. Overall, these findings confirmed the resistance of biofilm infections in vivo to potentially antibacterial properties of magnesium degradation products. In vivo imaging and histology indicated the induction of both, local and systemic host inflammatory responses against P. aeruginosa biofilms. Even though the innate host immune defenses could not eliminate the local infection for up to two weeks, there was no apparent systemic bacteremia and all animals investigated survived the infection.
    • Der zlog-Wert als Basis für die Standardisierung von Laborwerten

      Hoffmann, Georg; Klawonn, Frank; Lichtinghagen, Ralf; Orth, Matthias; Helmholtz-Zentrum für Infektionsforshung GmbH, Inhoffenstr. 7, 38124 Braunschweig, Germany. (2017-01-01)
      Zusammenfassung Hintergrund Im Zuge des deutschen E-Health-Gesetzes von 2016 wurde die DGKL aufgefordert, Vorschläge für die standardisierte Speicherung und Übermittlung von Labordaten zu erarbeiten. Wir schlagen dafür die in der Statistik weit verbreitete z-Transformation vor. Methoden Man erhält mit diesem Verfahren einen Relativwert, der angibt, um wie viele Standardabweichungen ein Messwert vom Mittelwert des Referenzkollektivs abweicht. Anhand realer Daten belegen wir die Annahme, dass die Werte gesunder Referenzpersonen durch logarithmische Transformation einer Normalverteilung angenähert werden können. Ergebnisse Kennt man somit die Unter- und Obergrenze UG und OG des Referenzintervalls, so kann man jedes Laborergebnis mit folgender Gleichung transformieren: Der zlog-Wert ist leicht interpretierbar: Sein Referenzintervall liegt methodenunabhängig stets zwischen –1,96 und +1,96; stark erniedrigte oder erhöhte Laborergebnisse führen zu zlog-Werten um –5 bzw. +5. Für eine intuitive Befunddarstellung kann man zlog-Werte auch in eine kontinuierliche Farbskala, z. B. von Blau über Weiß bis Orange umrechnen. Mithilfe der Umkehrfunktion lässt sich aus dem zlog-Wert auch das theoretische Resultat einer Messmethode mit einem anderen Referenzintervall berechnen: Schlussfolgerung Unser Standardisierungsvorschlag ist ein leicht realisierbarer und effektiver Beitrag zur Verbesserung der Datenqualität und Patientensicherheit im Rahmen des E-Health-Gesetzes. Es wird gefordert, dass alle Labore künftig zusätzlich zum Originalwert den zlog-Wert zur Verfügung stellen und dass in die Protokolle für die elektronische Labordatenübertragung (HL7, LDT) ein eigenes Feld für diesen zusätzlichen Wert eingefügt wird.
    • Design and characterization of dietary assessment in the German National Cohort.

      Knüppel, Sven; Clemens, Matthias; Conrad, Johanna; Gastell, Sylvia; Michels, Karin B; Leitzmann, Michael; Krist, Lilian; Pischon, Tobias; Krause, Gerard; Ahrens, Wolfgang; et al. (Springer Nature, 2019-01-15)
      BACKGROUND/OBJECTIVES: The aim of the study was to describe a novel dietary assessment strategy based on two instruments complemented by information from an external population applied to estimate usual food intake in the large-scale multicenter German National Cohort (GNC). As proof of concept, we applied the assessment strategy to data from a pretest study (2012-2013) to assess the feasibility of the novel assessment strategy. SUBJECTS/METHODS: First, the consumption probability for each individual was modeled using three 24 h food lists (24h-FLs) and frequencies from one food frequency questionnaire (FFQ). Second, daily consumed food amounts were estimated from the representative German National Nutrition Survey II (NVS II) taking the characteristics of the participants into account. Usual food intake was estimated using the product of consumption probability and amounts. RESULTS: We estimated usual intake of 41 food groups in 318 men and 377 women. The participation proportion was 100, 84.4, and 68.5% for the first, second, and third 24h-FL, respectively. We observed no associations between the probability of participating and lifestyle factors. The estimated distributions of usual food intakes were plausible and total energy was estimated to be 2707 kcal/day for men and 2103 kcal/day for women. The estimated consumption frequencies did not differ substantially between men and women with only few exceptions. The differences in energy intake between men and women were mostly due to differences in estimated daily amounts. CONCLUSIONS: The combination of repeated 24h-FLs, a FFQ, and consumption-day amounts from a reference population represents a user-friendly dietary assessment approach having generated plausible, but not yet validated, food intake values in the pretest study
    • Diagnostic needs for rare diseases and shared prediagnostic phenomena: Results of a German-wide expert Delphi survey.

      Blöß, Susanne; Klemann, Christian; Rother, Ann-Katrin; Mehmecke, Sandra; Schumacher, Ulrike; Mücke, Urs; Mücke, Martin; Stieber, Christiane; Klawonn, Frank; Kortum, Xiaowei; et al. (2017)
      Worldwide approximately 7,000 rare diseases have been identified. Accordingly, 4 million individuals live with a rare disease in Germany. The mean time to diagnosis is about 6 years and patients receive several incorrect diagnoses during this time. A multiplicity of factors renders diagnosing a rare disease extremely difficult. Detection of shared phenomena among individuals with different rare diseases could assist the diagnostic process. In order to explore the demand for diagnostic support and to obtain the commonalities among patients, a nationwide Delphi survey of centers for rare diseases and patient groups was conducted.
    • Diagnostic support for selected neuromuscular diseases using answer-pattern recognition and data mining techniques: a proof of concept multicenter prospective trial.

      Grigull, Lorenz; Lechner, Werner; Petri, Susanne; Kollewe, Katja; Dengler, Reinhard; Mehmecke, Sandra; Schumacher, Ulrike; Lücke, Thomas; Schneider-Gold, Christiane; Köhler, Cornelia; et al. (2016)
      Diagnosis of neuromuscular diseases in primary care is often challenging. Rare diseases such as Pompe disease are easily overlooked by the general practitioner. We therefore aimed to develop a diagnostic support tool using patient-oriented questions and combined data mining algorithms recognizing answer patterns in individuals with selected neuromuscular diseases. A multicenter prospective study for the proof of concept was conducted thereafter.
    • Diagnostic Support for Selected Paediatric Pulmonary Diseases Using Answer-Pattern Recognition in Questionnaires Based on Combined Data Mining Applications--A Monocentric Observational Pilot Study.

      Rother, Ann-Katrin; Schwerk, Nicolaus; Brinkmann, Folke; Klawonn, Frank; Lechner, Werner; Grigull, Lorenz; Helmholtz Centre for infection research, Inhoffenstr. 7, 38124 Braunschweig, Germany. (2015)
      Clinical symptoms in children with pulmonary diseases are frequently non-specific. Rare diseases such as primary ciliary dyskinesia (PCD), cystic fibrosis (CF) or protracted bacterial bronchitis (PBB) can be easily missed at the general practitioner (GP).
    • DncV Synthesizes Cyclic GMP-AMP and Regulates Biofilm Formation and Motility in ECOR31.

      Li, Fengyang; Cimdins, Annika; Rohde, Manfred; Jänsch, Lothar; Kaever, Volkhard; Nimtz, Manfred; Römling, Ute; HZI, Helmholtz Zentrum für Infektionsforschung GmbH, Inhoffenstr. 7, 38124 Braunschweig Germany. (ASM, 2019-03-05)
      Cyclic dinucleotides (cDNs) act as intracellular second messengers, modulating bacterial physiology to regulate the fundamental life style transition between motility and sessility commonly known as biofilm formation. Cyclic GMP-AMP (cGAMP), synthesized by the dinucleotide cyclase DncV, is a newly discovered cDN second messenger involved in virulence and chemotaxis in Vibrio cholerae O1 biovar El Tor. Here we report a novel role for horizontally transferred DncV in cGAMP production and regulation of biofilm formation and motility in the animal commensal strain Escherichia coli ECOR31. ECOR31 expresses a semiconstitutive temperature-independent rdar (red, dry, and rough) morphotype on Congo red agar plates characterized by the extracellular matrix components cellulose and curli fimbriae which requires activation by the major biofilm regulator CsgD and cyclic di-GMP signaling. In contrast, C-terminal His-tagged DncV negatively regulates the rdar biofilm morphotype and cell aggregation via downregulation of csgD mRNA steady-state level. Furthermore, DncV sequentially promotes and inhibits adhesion to the abiotic surface after 24 h and 48 h of growth, respectively. DncV also suppresses swimming and swarming motility posttranscriptional of the class 1 flagellum regulon gene flhD Purified DncV produced different cDNs, cyclic di-GMP, cyclic di-AMP, an unknown product(s), and the dominant species 3'3'-cGAMP. In vivo, only the 3'3'-cGAMP concentration was elevated upon short-term overexpression of dncV, making this work a first report on cGAMP production in E. coli Regulation of rdar biofilm formation and motility upon overexpression of untagged DncV in combination with three adjacent cotransferred gene products suggests a novel temperature-dependent cGAMP signaling module in E. coli ECOR31.IMPORTANCE The ability of bacteria to sense and respond to environmental signals is critical for survival. Bacteria use cyclic dinucleotides as second messengers to regulate a number of physiological processes, such as the fundamental life style transition between motility and sessility (biofilm formation). cGAMP, which is synthesized by a dinucleotide cyclase called DncV, is a newly discovered second messenger involved in virulence and chemotaxis in the Vibrio cholerae biovar El Tor causing the current 7th cholera pandemic. However, to what extent cGAMP exists and participates in physiological processes in other bacteria is still unknown. In this study, we found an elevated cGAMP level to possibly regulate biofilm formation and motility in the animal commensal E. coli strain ECOR31. Thus, we detected a novel role for cGAMP signaling in regulation of physiological processes other than those previously reported in proteobacterial species.
    • Effects of drift and noise on the optimal sliding window size for data stream regression models

      Tschumitschew, Katharina; Klawonn, Frank; Helmholtz-Zentrum für Infektionsforschung GmbH, Inhoffenstr. 7, 38124Braunschweig, Germany. (2016-05-27)
    • Effects of pathogen dependency in a multi-pathogen infectious disease system including population level heterogeneity - a simulation study.

      Bakuli, Abhishek; Klawonn, Frank; Karch, André; Mikolajczyk, Rafael T; Helmholtz-Zentrum für Infektionsforschung, GmbH, Inhoffenstr. 7, 38124 Braunschweig, Germany. (2017-12-13)
      Increased computational resources have made individual based models popular for modelling epidemics. They have the advantage of incorporating heterogeneous features, including realistic population structures (like e.g. households). Existing stochastic simulation studies of epidemics, however, have been developed mainly for incorporating single pathogen scenarios although the effect of different pathogens might directly or indirectly (e.g. via contact reductions) effect the spread of each pathogen. The goal of this work was to simulate a stochastic agent based system incorporating the effect of multiple pathogens, accounting for the household based transmission process and the dependency among pathogens.
    • Elucidation of the dual role of Mycobacterial MoeZR in molybdenum cofactor biosynthesis and cysteine biosynthesis.

      Voss, Martin; Nimtz, Manfred; Leimkühler, Silke; Institute of Biochemistry and Biology, University of Potsdam, Potsdam, Germany. (2011)
      The pathway of molybdenum cofactor biosynthesis has been studied in detail by using proteins from Mycobacterium species, which contain several homologs associated with the first steps of Moco biosynthesis. While all Mycobacteria species contain a MoeZR, only some strains have acquired an additional homolog, MoeBR, by horizontal gene transfer. The role of MoeBR and MoeZR was studied in detail for the interaction with the two MoaD-homologs involved in Moco biosynthesis, MoaD1 and MoaD2, in addition to the CysO protein involved in cysteine biosynthesis. We show that both proteins have a role in Moco biosynthesis, while only MoeZR, but not MoeBR, has an additional role in cysteine biosynthesis. MoeZR and MoeBR were able to complement an E. coli moeB mutant strain, but only in conjunction with the Mycobacterial MoaD1 or MoaD2 proteins. Both proteins were able to sulfurate MoaD1 and MoaD2 in vivo, while only MoeZR additionally transferred the sulfur to CysO. Our in vivo studies show that Mycobacteria have acquired several homologs to maintain Moco biosynthesis. MoeZR has a dual role in Moco- and cysteine biosynthesis and is involved in the sulfuration of MoaD and CysO, whereas MoeBR only has a role in Moco biosynthesis, which is not an essential function for Mycobacteria.
    • Evaluation of glyceraldehyde-3-phosphate, prolylpeptidyl isomerase A, and a set of stably expressed genes as reference mRNAs in urate crystal inflammation.

      Della Beffa, Cristina; Klawonn, Frank; Menetski, Joseph P; Schumacher, H Ralph; Pessler, Frank; Department of Infection Genetics, Helmholtz Centre for Infection Research, Inhoffenstr, 7, 38124 Braunschweig, Germany. frank.pessler@helmholtz-hzi.de. (2011)
      ABSTRACT:
    • External quality assessment schemes for glucose measurements in Germany: factors for successful participation, analytical performance and medical impact.

      Bietenbeck, Andreas; Geilenkeuser, Wolf J; Klawonn, Frank; Spannagl, Michael; Nauck, Matthias; Petersmann, Astrid; Thaler, Markus A; Winter, Christof; Luppa, Peter B; HZI,Helmholtz-Zentrum für Infektionsforschung GmbH, Inhoffenstr. 7,38124 Braunschweig, Germany. (2018-07-26)
      Determination of blood glucose concentration is one of the most important measurements in clinical chemistry worldwide. Analyzers in central laboratories (CL) and point-of-care tests (POCT) are both frequently used. In Germany, regular participation in external quality assessment (EQA) schemes is mandatory for laboratories performing glucose testing. Glucose testing data from the two German EQAs "Reference Institute for Bioanalytics" (RfB) and "INSTAND - Gesellschaft zur Förderung der Qualitätssicherung in medizinischen Laboratorien" (Instand) were analyzed from 2012 to 2016. Multivariable odds ratios (OR) for the probability to reach a "good" result were calculated. Imprecision and bias were determined and clinical risk of measurement errors estimated. The device employed was the most important variable required for a "good" performance in all EQAs. Additional participation in an EQA for CL automated analyzers improved performance in POCT EQAs. The reciprocal effect was less pronounced. New participants performed worse than experienced participants especially in CL EQAs. Imprecision was generally smaller for CL, but some POCT devices reached a comparable performance. Large lot-to-lot differences occurred in over 10% of analyzed cases. We propose the "bias budget" as a new metric to express the maximum allowable bias that still carries acceptable medical risk. Bias budgets were smallest and clinical risks of errors greatest in the low range of measurement 60-115 mg/dL (3.3-6.4 mmol/L) for most devices. EQAs help to maintain high analytical performances. They generate important data that serve as the foundation for learning and improvement in the laboratory healthcare system.