• Fast Regulation of GABAR Diffusion Dynamics by Nogo-A Signaling.

      Fricke, Steffen; Metzdorf, Kristin; Ohm, Melanie; Haak, Stefan; Heine, Martin; Korte, Martin; Zagrebelsky, Marta; HZI,Helmholtz-Zentrum für Infektionsforschung GmbH, Inhoffenstr. 7,38124 Braunschweig, Germany. (Elsevier, 2019-10-15)
      Precisely controlling the excitatory and inhibitory balance is crucial for the stability and information-processing ability of neuronal networks. However, the molecular mechanisms maintaining this balance during ongoing sensory experiences are largely unclear. We show that Nogo-A signaling reciprocally regulates excitatory and inhibitory transmission. Loss of function for Nogo-A signaling through S1PR2 rapidly increases GABAAR diffusion, thereby decreasing their number at synaptic sites and the amplitude of GABAergic mIPSCs at CA3 hippocampal neurons. This increase in GABAAR diffusion rate is correlated with an increase in Ca2+ influx and requires the calcineurin-mediated dephosphorylation of the γ2 subunit at serine 327. These results suggest that Nogo-A signaling rapidly strengthens inhibitory GABAergic transmission by restricting the diffusion dynamics of GABAARs. Together with the observation that Nogo-A signaling regulates excitatory transmission in an opposite manner, these results suggest a crucial role for Nogo-A signaling in modulating the excitation and inhibition balance to restrict synaptic plasticity.
    • Modeling Neurodegenerative Spinocerebellar Ataxia Type 13 in Zebrafish Using a Purkinje Neuron Specific Tunable Coexpression System.

      Namikawa, Kazuhiko; Dorigo, Alessandro; Zagrebelsky, Marta; Russo, Giulio; Kirmann, Toni; Fahr, Wieland; Dübel, Stefan; Korte, Martin; Köster, Reinhard W; HZI,Helmholtz-Zentrum für Infektionsforschung GmbH, Inhoffenstr. 7,38124 Braunschweig, Germany. (Society of Neuroscience, 2019-05-15)
      Purkinje cells (PCs) are primarily affected in neurodegenerative spinocerebellar ataxias (SCAs). For generating animal models for SCAs, genetic regulatory elements specifically targeting PCs are required, thereby linking pathological molecular effects with impaired function and organismic behavior. Because cerebellar anatomy and function are evolutionary conserved, zebrafish represent an excellent model to study SCAs in vivo We have isolated a 258 bp cross-species PC-specific enhancer element that can be used in a bidirectional manner for bioimaging of transgene-expressing PCs in zebrafish (both sexes) with variable copy numbers for tuning expression strength. Emerging ectopic expression at high copy numbers can be further eliminated by repurposing microRNA-mediated posttranslational mRNA regulation.Subsequently, we generated a transgenic SCA type 13 (SCA13) model, using a zebrafish-variant mimicking a human pathological SCA13R420H mutation, resulting in cell-autonomous progressive PC degeneration linked to cerebellum-driven eye-movement deficits as observed in SCA patients. This underscores that investigating PC-specific cerebellar neuropathologies in zebrafish allows for interconnecting bioimaging of disease mechanisms with behavioral analysis suitable for therapeutic compound testing.SIGNIFICANCE STATEMENT SCA13 patients carrying a KCNC3R420H allele have been shown to display mid-onset progressive cerebellar atrophy, but genetic modeling of SCA13 by expressing this pathogenic mutant in different animal models has not resulted in neuronal degeneration so far; likely because the transgene was expressed in heterologous cell types. We developed a genetic system for tunable PC-specific coexpression of several transgenes to manipulate and simultaneously monitor cerebellar PCs. We modeled a SCA13 zebrafish accessible for bioimaging to investigate disease progression, revealing robust PC degeneration, resulting in impaired eye movement. Our transgenic zebrafish mimicking both neuropathological and behavioral changes manifested in SCA-affected patients will be suitable for investigating causes of cerebellar diseases in vivo from the molecular to the behavioral level.
    • Two-Photon Correlation Spectroscopy in Single Dendritic Spines Reveals Fast Actin Filament Reorganization during Activity-Dependent Growth.

      Chen, Jian-Hua; Kellner, Yves; Zagrebelsky, Marta; Grunwald, Matthias; Korte, Martin; Walla, Peter Jomo; Helmholtz Centre for infection research, Inhoffenstr. 7, 38124 Braunschweig, Germany. (2015)
      Two-photon fluorescence correlation spectroscopy (2P-FCS) within single dendritic spines of living hippocampal pyramidal neurons was used to resolve various subpopulations of mobile F-actin during activity-dependent structural changes such as potentiation induced spine head growth. Two major classes of mobile F-actin were discovered: very dynamic and about a hundred times less dynamic F-actin. Spine head enlargement upon application of Tetraethylammonium (TEA), a protocol previously used for the chemical induction of long-term potentiation (cLTP) strictly correlated to changes in the dynamics and filament numbers in the different actin filament fractions. Our observations suggest that spine enlargement is governed by a mechanism in which longer filaments are first cut into smaller filaments that cooperate with the second, increasingly dynamic shorter actin filament population to quickly reorganize and expand the actin cytoskeleton within the spine head. This process would allow a fast and efficient spine head enlargement using a major fraction of the actin filament population that was already present before spine head growth.