• Novel Insights into the Physiological Function of the APP (Gene) Family and Its Proteolytic Fragments in Synaptic Plasticity.

      Ludewig, Susann; Korte, Martin; Hemholtz Centre for infection research, Inhoffenstr. 7, 38124 Braunschweig, Germany. (2016)
      The amyloid precursor protein (APP) is well known to be involved in the pathophysiology of Alzheimer's disease (AD) via its cleavage product amyloid ß (Aß). However, the physiological role of APP, its various proteolytic products and the amyloid precursor-like proteins 1 and 2 (APLP1/2) are still not fully clarified. Interestingly, it has been shown that learning and memory processes represented by functional and structural changes at synapses are altered in different APP and APLP1/2 mouse mutants. In addition, APP and its fragments are implicated in regulating synaptic strength further reinforcing their modulatory role at the synapse. While APLP2 and APP are functionally redundant, the exclusively CNS expressed APLP1, might have individual roles within the synaptic network. The proteolytic product of non-amyloidogenic APP processing, APPsα, emerged as a neurotrophic peptide that facilitates long-term potentiation (LTP) and restores impairments occurring with age. Interestingly, the newly discovered η-secretase cleavage product, An-α acts in the opposite direction, namely decreasing LTP. In this review we summarize recent findings with emphasis on the physiological role of the APP gene family and its proteolytic products on synaptic function and plasticity, especially during processes of hippocampal LTP. Therefore, we focus on literature that provide electrophysiological data by using different mutant mouse strains either lacking full-length or parts of the APP proteins or that utilized secretase inhibitors as well as secreted APP fragments.
    • Respiratory viral infections and associated neurological manifestations

      Hosseini, Shirin; Michaelsen-Preusse, Kristin; Korte, Martin; HZI,Helmholtz-Zentrum für Infektionsforschung GmbH, Inhoffenstr. 7,38124 Braunschweig, Germany. (Walter de Gruyter GmbH, 2021-03-29)
      Respiratory viruses as a major threat to human and animal health today are still a leading cause of worldwide severe pandemics. Although the primary target tissue of these viruses is the lung, they can induce immediate or delayed neuropathological manifestations in humans and animals. Already after the Spanish flu (1918/20) evidence accumulated that neurological diseases can be induced by respiratory viral infections as some patients showed parkinsonism, seizures, or dementia. In the recent outbreak of COVID-19 as well patients suffered from headache, dizziness, nausea, or reduced sense of smell and taste suggesting that SARS-CoV2 may affect the central nervous system (CNS). It was shown that different respiratory viral infections can lead to deleterious complications in the CNS by a direct invasion of the virus into the brain and/or indirect pathways via proinflammatory cytokine expression. Therefore, we will discuss in this review mechanisms how the most prevalent respiratory viruses including influenza and coronaviruses in humans can exert long-lasting detrimental effects on the CNS and possible links to the development of neurodegenerative diseases as an enduring consequence.
    • Signaling via the p75 neurotrophin receptor facilitates amyloid-β-induced dendritic spine pathology.

      Patnaik, Abhisarika; Zagrebelsky, Marta; Korte, Martin; Holz, Andreas; HZI,Helmholtz-Zentrum für Infektionsforschung GmbH, Inhoffenstr. 7,38124 Braunschweig, Germany. (NPG, 2020-08-07)
      Synapse and dendritic spine loss induced by amyloid-β oligomers is one of the main hallmarks of the early phases of Alzheimer's disease (AD) and is directly correlated with the cognitive decline typical of this pathology. The p75 neurotrophin receptor (p75NTR) binds amyloid-β oligomers in the nM range. While it was shown that µM concentrations of amyloid-β mediate cell death, the role and intracellular signaling of p75NTR for dendritic spine pathology induced by sublethal concentrations of amyloid-β has not been analyzed. We describe here p75NTR as a crucial binding partner in mediating effects of soluble amyloid-β oligomers on dendritic spine density and structure in non-apoptotic hippocampal neurons. Removing or over-expressing p75NTR in neurons rescues or exacerbates the typical loss of dendritic spines and their structural alterations observed upon treatment with nM concentrations of amyloid-β oligomers. Moreover, we show that binding of amyloid-β oligomers to p75NTR activates the RhoA/ROCK signaling cascade resulting in the fast stabilization of the actin spinoskeleton. Our results describe a role for p75NTR and downstream signaling events triggered by binding of amyloid-β oligomers and causing dendritic spine pathology. These observations further our understanding of the molecular mechanisms underlying one of the main early neuropathological hallmarks of AD.
    • Two-Photon Correlation Spectroscopy in Single Dendritic Spines Reveals Fast Actin Filament Reorganization during Activity-Dependent Growth.

      Chen, Jian-Hua; Kellner, Yves; Zagrebelsky, Marta; Grunwald, Matthias; Korte, Martin; Walla, Peter Jomo; Helmholtz Centre for infection research, Inhoffenstr. 7, 38124 Braunschweig, Germany. (2015)
      Two-photon fluorescence correlation spectroscopy (2P-FCS) within single dendritic spines of living hippocampal pyramidal neurons was used to resolve various subpopulations of mobile F-actin during activity-dependent structural changes such as potentiation induced spine head growth. Two major classes of mobile F-actin were discovered: very dynamic and about a hundred times less dynamic F-actin. Spine head enlargement upon application of Tetraethylammonium (TEA), a protocol previously used for the chemical induction of long-term potentiation (cLTP) strictly correlated to changes in the dynamics and filament numbers in the different actin filament fractions. Our observations suggest that spine enlargement is governed by a mechanism in which longer filaments are first cut into smaller filaments that cooperate with the second, increasingly dynamic shorter actin filament population to quickly reorganize and expand the actin cytoskeleton within the spine head. This process would allow a fast and efficient spine head enlargement using a major fraction of the actin filament population that was already present before spine head growth.
    • Type I Interferon Receptor Signaling in Astrocytes Regulates Hippocampal Synaptic Plasticity and Cognitive Function of the Healthy CNS.

      Hosseini, Shirin; Michaelsen-Preusse, Kristin; Grigoryan, Gayane; Chhatbar, Chintan; Kalinke, Ulrich; Korte, Martin; HZI,Helmholtz-Zentrum für Infektionsforschung GmbH, Inhoffenstr. 7,38124 Braunschweig, Germany.
      Type I interferon receptor (IFNAR) signaling is a hallmark of viral control and host protection. Here, we show that, in the hippocampus of healthy IFNAR-deficient mice, synapse number and synaptic plasticity, as well as spatial learning, are impaired. This is also the case for IFN-β-deficient animals. Moreover, antibody-mediated IFNAR blocking acutely interferes with neuronal plasticity, whereas a low-dose application of IFN-β has a positive effect on dendritic spine structure. Interfering with IFNAR signaling in different cell types shows a role for cognitive function and synaptic plasticity specifically mediated by astrocytes. Intriguingly, levels of the astrocytic glutamate-aspartate transporter (GLAST) are reduced significantly upon IFN-β treatment and increase following inhibition of IFNAR signaling. These results indicate that, besides the prominent role for host defense, IFNAR is important for synaptic plasticity as well as cognitive function. Astrocytes are at the center stage of this so-far-unknown signaling cascade.