• Decrease of UPR- and ERAD-related proteins in Pichia pastoris during methanol-induced secretory insulin precursor production in controlled fed-batch cultures.

      Vanz, Ana Letícia; Nimtz, Manfred; Rinas, Ursula (2014)
      Pichia pastoris is a popular yeast preferably employed for secretory protein production. Secretion is not always efficient and endoplasmic retention of proteins with aberrant folding properties, or when produced at exaggerated rates, can occur. In these cases production usually leads to an unfolded protein response (UPR) and the induction of the endoplasmic reticulum associated degradation (ERAD). P. pastoris is nowadays also an established host for secretory insulin precursor (IP) production, though little is known about the impact of IP production on the host cell physiology, in particular under industrially relevant production conditions. Here, we evaluate the cellular response to aox1 promoter-controlled, secretory IP production in controlled fed-batch processes using a proteome profiling approach.
    • The intra- and extracellular proteome of Aspergillus niger growing on defined medium with xylose or maltose as carbon substrate

      Lu, Xin; Sun, Jibin; Nimtz, Manfred; Wissing, Josef; Zeng, An-Ping; Rinas, Ursula (2010-04-20)
      Abstract Background The filamentous fungus Aspergillus niger is well-known as a producer of primary metabolites and extracellular proteins. For example, glucoamylase is the most efficiently secreted protein of Aspergillus niger, thus the homologous glucoamylase (glaA) promoter as well as the glaA signal sequence are widely used for heterologous protein production. Xylose is known to strongly repress glaA expression while maltose is a potent inducer of glaA promoter controlled genes. For a more profound understanding of A. niger physiology, a comprehensive analysis of the intra- and extracellular proteome of Aspergillus niger AB1.13 growing on defined medium with xylose or maltose as carbon substrate was carried out using 2-D gel electrophoresis/Maldi-ToF and nano-HPLC MS/MS. Results The intracellular proteome of A. niger growing either on xylose or maltose in well-aerated controlled bioreactor cultures revealed striking similarities. In both cultures the most abundant intracellular protein was the TCA cycle enzyme malate-dehydrogenase. Moreover, the glycolytic enzymes fructose-bis-phosphate aldolase and glyceraldehyde-3-phosphate-dehydrogenase and the flavohemoglobin FhbA were identified as major proteins in both cultures. On the other hand, enzymes involved in the removal of reactive oxygen species, such as superoxide dismutase and peroxiredoxin, were present at elevated levels in the culture growing on maltose but only in minor amounts in the xylose culture. The composition of the extracellular proteome differed considerably depending on the carbon substrate. In the secretome of the xylose-grown culture, a variety of plant cell wall degrading enzymes were identified, mostly under the control of the xylanolytic transcriptional activator XlnR, with xylanase B and ferulic acid esterase as the most abundant ones. The secretome of the maltose-grown culture did not contain xylanolytic enzymes, instead high levels of catalases were found and glucoamylase (multiple spots) was identified as the most abundant extracellular protein. Surprisingly, the intracellular proteome of A. niger growing on xylose in bioreactor cultures differed more from a culture growing in shake flasks using the same medium than from the bioreactor culture growing on maltose. For example, in shake flask cultures with xylose as carbon source the most abundant intracellular proteins were not the glycolytic and the TCA cycle enzymes and the flavohemoglobin, but CipC, a protein of yet unknown function, superoxide dismutase and an NADPH dependent aldehyde reductase. Moreover, vacuolar proteases accumulated to higher and ER-resident chaperones and foldases to lower levels in shake flask compared to the bioreactor cultures. Conclusions The utilization of xylose or maltose was strongly affecting the composition of the secretome but of minor influence on the composition of the intracellular proteome. On the other hand, differences in culture conditions (pH control versus no pH control, aeration versus no aeration and stirring versus shaking) have a profound effect on the intracellular proteome. For example, lower levels of ER-resident chaperones and foldases and higher levels of vacuolar proteases render shake flask conditions less favorable for protein production compared to controlled bioreactor cultures.
    • The metabolic potential of Escherichia coli BL21 in defined and rich medium.

      Li, Zhaopeng; Nimtz, Manfred; Rinas, Ursula (2014)
      The proteome reflects the available cellular machinery to deal with nutrients and environmental challenges. The most common E. coli strain BL21 growing in different, commonly employed media was evaluated using a detailed quantitative proteome analysis.
    • Optimized procedure to generate heavy isotope and selenomethionine-labeled proteins for structure determination using Escherichia coli-based expression systems.

      Li, Zhaopeng; Nimtz, Manfred; Rinas, Ursula; Helmholtz Centre for Infection Research (SB), Braunschweig, Germany. (2011-11)
      Generating sufficient quantities of labeled proteins represents a bottleneck in protein structure determination. A simple protocol for producing heavy isotope as well as selenomethionine (Se-Met)-labeled proteins was developed using T7-based Escherichia coli expression systems. The protocol is applicable for generation of single-, double-, and triple-labeled proteins ((15)N, (13)C, and (2)H) in shaker flask cultures. Label incorporation into the target protein reached 99% and 97% for (15)N and (13)C, respectively, and 75% of (non-exchangeable) hydrogen for (2)H labeling. The expression yields and final cell densities (OD600 ~16) were the same as for the production of non-labeled protein. This protocol is also applicable for Se-Met labeling, leading to Se-Met incorporation into the target protein of 70% or 90% using prototrophic or methionine auxotrophic E. coli strains, respectively.