Show simple item record

dc.contributor.authorHatzikirou, H
dc.contributor.authorAlfonso, J C L
dc.contributor.authorMühle, S
dc.contributor.authorStern, C
dc.contributor.authorWeiss, S
dc.contributor.authorMeyer-Hermann, Michael
dc.date.accessioned2017-02-08T15:27:26Z
dc.date.available2017-02-08T15:27:26Z
dc.date.issued2015-11-06
dc.identifier.citationCancer therapeutic potential of combinatorial immuno- and vasomodulatory interventions. 2015, 12 (112) J R Soc Interfaceen
dc.identifier.issn1742-5662
dc.identifier.pmid26510827
dc.identifier.doi10.1098/rsif.2015.0439
dc.identifier.urihttp://hdl.handle.net/10033/620814
dc.description.abstractCurrently, most of the basic mechanisms governing tumour-immune system interactions, in combination with modulations of tumour-associated vasculature, are far from being completely understood. Here, we propose a mathematical model of vascularized tumour growth, where the main novelty is the modelling of the interplay between functional tumour vasculature and effector cell recruitment dynamics. Parameters are calibrated on the basis of different in vivo immunocompromised Rag1(-/-) and wild-type (WT) BALB/c murine tumour growth experiments. The model analysis supports that tumour vasculature normalization can be a plausible and effective strategy to treat cancer when combined with appropriate immunostimulations. We find that improved levels of functional tumour vasculature, potentially mediated by normalization or stress alleviation strategies, can provide beneficial outcomes in terms of tumour burden reduction and growth control. Normalization of tumour blood vessels opens a therapeutic window of opportunity to augment the antitumour immune responses, as well as to reduce intratumoral immunosuppression and induced hypoxia due to vascular abnormalities. The potential success of normalizing tumour-associated vasculature closely depends on the effector cell recruitment dynamics and tumour sizes. Furthermore, an arbitrary increase in the initial effector cell concentration does not necessarily imply better tumour control. We evidence the existence of an optimal concentration range of effector cells for tumour shrinkage. Based on these findings, we suggest a theory-driven therapeutic proposal that optimally combines immuno- and vasomodulatory interventions.
dc.language.isoenen
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/*
dc.subject.meshAnimalsen
dc.subject.meshMiceen
dc.subject.meshMice, Inbred BALB Cen
dc.subject.meshMice, Knockouten
dc.subject.meshModels, Biologicalen
dc.subject.meshNeoplasms, Experimentalen
dc.subject.meshNeovascularization, Pathologicen
dc.titleCancer therapeutic potential of combinatorial immuno- and vasomodulatory interventions.en
dc.typeArticleen
dc.contributor.departmentBRICS, Braunschweiger Zentrum für Systembiologie, Rebenring 56, 38124 Braunschweig, Germany.en
dc.identifier.journalJournal of the Royal Society, Interfaceen
refterms.dateFOA2018-06-12T23:40:08Z
html.description.abstractCurrently, most of the basic mechanisms governing tumour-immune system interactions, in combination with modulations of tumour-associated vasculature, are far from being completely understood. Here, we propose a mathematical model of vascularized tumour growth, where the main novelty is the modelling of the interplay between functional tumour vasculature and effector cell recruitment dynamics. Parameters are calibrated on the basis of different in vivo immunocompromised Rag1(-/-) and wild-type (WT) BALB/c murine tumour growth experiments. The model analysis supports that tumour vasculature normalization can be a plausible and effective strategy to treat cancer when combined with appropriate immunostimulations. We find that improved levels of functional tumour vasculature, potentially mediated by normalization or stress alleviation strategies, can provide beneficial outcomes in terms of tumour burden reduction and growth control. Normalization of tumour blood vessels opens a therapeutic window of opportunity to augment the antitumour immune responses, as well as to reduce intratumoral immunosuppression and induced hypoxia due to vascular abnormalities. The potential success of normalizing tumour-associated vasculature closely depends on the effector cell recruitment dynamics and tumour sizes. Furthermore, an arbitrary increase in the initial effector cell concentration does not necessarily imply better tumour control. We evidence the existence of an optimal concentration range of effector cells for tumour shrinkage. Based on these findings, we suggest a theory-driven therapeutic proposal that optimally combines immuno- and vasomodulatory interventions.


Files in this item

Thumbnail
Name:
Hatzikirou et al.pdf
Size:
1.035Mb
Format:
PDF
Description:
free PDF from the PubMed repository ...

This item appears in the following Collection(s)

Show simple item record

http://creativecommons.org/licenses/by-nc-sa/4.0/
Except where otherwise noted, this item's license is described as http://creativecommons.org/licenses/by-nc-sa/4.0/