News

Hed of the department: Prof. Stadler

Collections in this community

Recent Submissions

  • Ten reasons why a sequence-based nomenclature is not useful for fungi anytime soon.

    Thines, Marco; Crous, Pedro W; Aime, M Catherine; Aoki, Takayuki; Cai, Lei; Hyde, Kevin D; Miller, Andrew N; Zhang, Ning; Stadler, Marc; HZI,Helmholtz-Zentrum für Infektionsforschung GmbH, Inhoffenstr. 7,38124 Braunschweig, Germany. (BMC, 2018-05-28)
    The large number of species still to be discovered in fungi, together with an exponentially growing number of environmental sequences that cannot be linked to known taxa, has fuelled the idea that it might be necessary to formally name fungi on the basis of sequence data only. Here we object to this idea due to several shortcomings of the approach, ranging from concerns regarding reproducibility and the violation of general scientific principles to ethical issues. We come to the conclusion that sequence-based nomenclature is potentially harmful for mycology as a discipline. Additionally, a classification based on sequences as types is not within reach anytime soon, because there is a lack of consensus regarding common standards due to the fast pace at which sequencing technologies develop.
  • The planctomycete Stieleria maiorica Mal15 employs stieleriacines to alter the species composition in marine biofilms.

    Kallscheuer, Nicolai; Jeske, Olga; Sandargo, Birthe; Boedeker, Christian; Wiegand, Sandra; Bartling, Pascal; Jogler, Mareike; Rohde, Manfred; Petersen, Jörn; Medema, Marnix H; et al. (Nature publishing group(NPG), 2020-06-12)
    Bacterial strains of the phylum Planctomycetes occur ubiquitously, but are often found on surfaces of aquatic phototrophs, e.g. alga. Despite slower growth, planctomycetes are not outcompeted by faster-growing bacteria in biofilms on such surfaces; however, strategies allowing them to compensate for slower growth have not yet been investigated. Here, we identified stieleriacines, a class of N-acylated tyrosines produced by the novel planctomycete Stieleria maiorica Mal15T, and analysed their effects on growth of the producing strain and bacterial species likely co-occurring with strain Mal15T. Stieleriacines reduced the lag phase of Mal15T and either stimulated or inhibited biofilm formation of two bacterial competitors, indicating that Mal15T employs stieleriacines to specifically alter microbial biofilm composition. The genetic organisation of the putative stieleriacine biosynthetic cluster in strain Mal15T points towards a functional link of stieleriacine biosynthesis to exopolysaccharide-associated protein sorting and biofilm formation.
  • Discovery of a new species of the Hypoxylon rubiginosum complex from Iran and antagonistic activities of spp. against the Ash Dieback pathogen, Hymenoscyphus fraxineus,, in dual culture.

    Pourmoghaddam, Mohammad Javad; Lambert, Christopher; Surup, Frank; Khodaparast, Seyed Akbar; Krisai-Greilhuber, Irmgard; Voglmayr, Hermann; Stadler, Marc; HZI,Helmholtz-Zentrum für Infektionsforschung GmbH, Inhoffenstr. 7,38124 Braunschweig, Germany. (PenSoft Publishers, 2020-04-24)
    During a survey of xylarialean fungi in Northern Iran, several specimens that showed affinities to the Hypoxylon rubiginosum complex were collected and cultured. A comparison of their morphological characters, combined with a chemotaxonomic study based on high performance liquid chromatography, coupled with diode array detection and mass spectrometry (HPLC-DAD/MS) and a multi-locus phylogeny based on ITS, LSU, rbp2 and tub2 DNA sequences, revealed a new species here described as Hypoxylon guilanense. In addition, Hypoxylon rubiginosumsensu stricto was also encountered. Concurrently, an endophytic isolate of the latter species showed strong antagonistic activities against the Ash Dieback pathogen, Hymenoscyphus fraxineus, in a dual culture assay in our laboratory. Therefore, we decided to test the new Iranian fungi for antagonistic activities against the pathogen, along with several cultures of other Hypoxylon species that are related to H. rubiginosum. Our results suggest that the antagonistic effects of Hypoxylon spp. against Hym. fraxineus are widespread and that they are due to the production of antifungal phomopsidin derivatives in the presence of the pathogen.
  • Polyketide-Derived Secondary Metabolites from a Dothideomycetes Fungus, . et . ., (Muyocopronales) with Antimicrobial and Cytotoxic Activities.

    Mapook, Ausana; Macabeo, Allan Patrick G; Thongbai, Benjarong; Hyde, Kevin D; Stadler, Marc; HZI,Helmholtz-Zentrum für Infektionsforschung GmbH, Inhoffenstr. 7,38124 Braunschweig, Germany. (MDPI, 2020-04-08)
    Pseudopalawania siamensisgen. et sp. nov., from northern Thailand, is introduced based on multi-gene analyses and morphological comparison. An isolate was fermented in yeast malt culture broth and explored for its secondary metabolite production. Chromatographic purification of the crude ethyl acetate (broth) extract yielded four tetrahydroxanthones comprised of a new heterodimeric bistetrahydroxanthone, pseudopalawanone (1), two known dimeric derivatives, 4,4'-secalonic acid D (2) and penicillixanthone A (3), the corresponding monomeric tetrahydroxanthone paecilin B (4), and the known benzophenone, cephalanone F (5). Compounds 1-3 showed potent inhibitory activity against Gram-positive bacteria. Compounds 2 and 3 were inhibitory against Bacillus subtilis with minimum inhibitory concentrations (MIC) of 1.0 and 4.2 μg/mL, respectively. Only compound 2 showed activity against Mycobacterium smegmatis. In addition, the dimeric compounds 1-3 also showed moderate cytotoxic effects on HeLa and mouse fibroblast cell lines, which makes them less attractive as candidates for development of selectively acting antibiotics.
  • New Peptaibiotics and a Cyclodepsipeptide from : Isolation, Identification, Cytotoxic and Nematicidal Activities.

    Moussa, Ashaimaa Y; Lambert, Christopher; Stradal, Theresia E B; Ashrafi, Samad; Maier, Wolfgang; Stadler, Marc; Helaly, Soleiman E; HZI,Helmholtz-Zentrum für Infektionsforschung GmbH, Inhoffenstr. 7,38124 Braunschweig, Germany. (MDPI, 2020-03-22)
    Fungal associations with nematodes have attracted scientific attention because of the need to develop new biocontrol agents. In this context, Ijuhya vitellina, an antagonistic fungus previously isolated from the plant parasitic cyst nematode Heterodera filipjevi, was selected to carry out an in-depth metabolomic study for its active metabolites. Herein, three new nonapeptide peptaibols with leucinostatin based sequences were isolated and identified by 1, 2D NMR, and HR-ESI-MS-MS. The absolute configuration was assigned based on Marfay's analysis and Mosher ester formation. The new leucinostatins manifested moderate nematicidal effect against the plant pathogenic nematode Pratylenchus penetrans with LD90 values ranging from 5 to 7 µg/mL. Furthermore, a cyclodepsipeptide, named arthrichitin D, with five amino acid residues attached to a 3-hydroxy-2,4-dimethylhexadeca-4,6-dienoic fatty acid chain was discovered and showed weak nematicidal effect against Caenorhabditis elegans. Chaetoglobosin B and its 19-O-acetyl derivative were also obtained as minor metabolites, and the activity of chaetoglobosin B on the actin cytoskeleton of mammalian cells was assessed.
  • Viridistratins A-C, Antimicrobial and Cytotoxic Benzo[]fluoranthenes from Stromata of (Hypoxylaceae, Ascomycota).

    Becker, Kevin; Wessel, Anna-Charleen; Luangsa-Ard, J Jennifer; Stadler, Marc; HZI,Helmholtz-Zentrum für Infektionsforschung GmbH, Inhoffenstr. 7,38124 Braunschweig, Germany. (MDPI, 2020-05-23)
    During the course of our search for novel biologically active metabolites from tropical fungi, we are using chemotaxonomic and taxonomic methodology for the preselection of interesting materials. Recently, three previously undescribed benzo[j]fluoranthenes (1-3) together with the known derivatives truncatones A and C (4, 5) were isolated from the stromata of the recently described species Annulohypoxylon viridistratum collected in Thailand. Their chemical structures were elucidated by means of spectral methods, including nuclear magnetic resonance (NMR) spectroscopy and high-resolution mass spectrometry (HR-MS). The new compounds, for which we propose the trivial names viridistratins A-C, exhibited weak-to-moderate antimicrobial and cytotoxic activities in cell-based assays.
  • Diversity of Myxobacteria-We Only See the Tip of the Iceberg.

    Mohr, Kathrin I; HZI,Helmholtz-Zentrum für Infektionsforschung GmbH, Inhoffenstr. 7,38124 Braunschweig, Germany. (MDPI, 2018-08-11)
    The discovery of new antibiotics is mandatory with regard to the increasing number of resistant pathogens. One approach is the search for new antibiotic producers in nature. Among actinomycetes, Bacillus species, and fungi, myxobacteria have been a rich source for bioactive secondary metabolites for decades. To date, about 600 substances could be described, many of them with antibacterial, antifungal, or cytostatic activity. But, recent cultivation-independent studies on marine, terrestrial, or uncommon habitats unequivocally demonstrate that the number of uncultured myxobacteria is much higher than would be expected from the number of cultivated strains. Although several highly promising myxobacterial taxa have been identified recently, this so-called Great Plate Count Anomaly must be overcome to get broader access to new secondary metabolite producers. In the last years it turned out that especially new species, genera, and families of myxobacteria are promising sources for new bioactive metabolites. Therefore, the cultivation of the hitherto uncultivable ones is our biggest challenge.
  • Labyrinthopeptins as virolytic inhibitors of respiratory syncytial virus cell entry.

    Blockus, Sebastian; Sake, Svenja M; Wetzke, Martin; Grethe, Christina; Graalmann, Theresa; Pils, Marina; Le Goffic, Ronan; Galloux, Marie; Prochnow, Hans; Rox, Katharina; et al. (Elsevier, 2020-03-18)
    Acute lower respiratory tract infections (ALRI) caused by respiratory syncytial virus (RSV) are associated with a severe disease burden among infants and elderly patients. Treatment options are limited. While numerous drug candidates with different viral targets are under development, the utility of RSV entry inhibitors is challenged by a low resistance barrier and by single mutations causing cross-resistance against a wide spectrum of fusion inhibitor chemotypes. We developed a cell-based screening assay for discovery of compounds inhibiting infection with primary RSV isolates. Using this system, we identified labyrinthopeptin A1 and A2 (Laby A1/A2), lantibiotics isolated from Actinomadura namibiensis, as effective RSV cell entry inhibitors with IC50s of 0.39 μM and 4.97 μM, respectively, and with favourable therapeutic index (>200 and > 20, respectively). Both molecules were active against multiple RSV strains including primary isolates and their antiviral activity against RSV was confirmed in primary human airway cells ex vivo and a murine model in vivo. Laby A1/A2 were antiviral in prophylactic and therapeutic treatment regimens and displayed synergistic activity when applied in combination with each other. Mechanistic studies showed that Laby A1/A2 exert virolytic activity likely by binding to phosphatidylethanolamine moieties within the viral membrane and by disrupting virus particle membrane integrity. Probably due to its specific mode of action, Laby A1/A2 antiviral activity was not affected by common resistance mutations to known RSV entry inhibitors. Taken together, Laby A1/A2 represent promising candidates for development as RSV inhibitors. Moreover, the cell-based screening system with primary RSV isolates described here should be useful to identify further antiviral agents.
  • Nonocarbolines A-E, -Carboline Antibiotics Produced by the Rare Actinobacterium sp. from Indonesia.

    Primahana, Gian; Risdian, Chandra; Mozef, Tjandrawati; Sudarman, Enge; Köck, Matthias; Wink, Joachim; Stadler, Marc; HZI,Helmholtz-Zentrum für Infektionsforschung GmbH, Inhoffenstr. 7,38124 Braunschweig, Germany. (MDPI, 2020-03-17)
    During the course of our ongoing screening for novel biologically active secondary metabolites, the rare Actinobacterium, Nonomuraea sp. 1808210CR was found to produce five unprecedented β-carboline derivatives, nonocarbolines A-E (1-5). Their structures were elucidated from high-resolution mass spectrometry, 1D and 2D nuclear magnetic resonance spectroscopy, and the absolute configuration of 4 was determined by using the modified Mosher method. Nonocarboline B (2) displayed moderate antifungal activity against Mucor hiemalis, while nonocarboline D (4) exhibited significant cytotoxic activity against the human lung carcinoma cell line A-549 with the IC50 value of 1.7 µM.
  • Lanyamycin, a macrolide antibiotic from Sorangium cellulosum, strain Soce 481 (Myxobacteria)

    Mulwa, Lucky S.; Jansen, Rolf; Praditya, Dimas F.; Mohr, Kathrin I.; Okanya, Patrick W.; Wink, Joachim; Steinmann, Eike; Stadler, Marc; HZI,Helmholtz-Zentrum für Infektionsforschung GmbH, Inhoffenstr. 7,38124 Braunschweig, Germany. (Beilstein-Institut, 2018-06-26)
    Lanyamycin (1/2), a secondary metabolite occurring as two epimers, was isolated from the myxobacterium Sorangium cellulosum, strain Soce 481. The structures of both epimers were elucidated from HRESIMS and 1D and 2D NMR data and the relative configuration of their macrolactone ring was assigned based on NOE and vicinal 1H NMR coupling constants and by calculation of a 3D model. Lanyamycin inhibited HCV infection into mammalian liver cells with an IC50 value of 11.8 µM, and exhibited a moderate cytotoxic activity against the mouse fibroblast cell line L929 and the human nasopharyngeal cell line KB3 with IC50 values of 3.1 and 1.5 μM, respectively, and also suppressed the growth of the Gram-positive bacterium Micrococcus luteus.
  • Special issue: The contributions of Erio Camporesi

    Phukhamsakda, Chayanard; Wijayawardene, Nalin N.; Ariyawansa, Hiran A.; Senanayake, Indunil C.; Li, Wen-Jing; Wanasinghe, Dhanushka N.; Phookamsak, Rungtiwa; Tian, Qing; Daranagama, Dinushani A.; Thambugala, Kasun M.; et al. (Springer Science and Business Media LLC, 2020-03-23)
    [No abstract available]
  • Tutuilamides A-C: Vinyl-Chloride-Containing Cyclodepsipeptides from Marine Cyanobacteria with Potent Elastase Inhibitory Properties.

    Keller, Lena; Canuto, Kirley Marques; Liu, Chenxi; Suzuki, Brian M; Almaliti, Jehad; Sikandar, Asfandyar; Naman, C Benjamin; Glukhov, Evgenia; Luo, Danmeng; Duggan, Brendan M; et al. (AmericanChemical Society(ACS), 2020-01-28)
    Marine cyanobacteria (blue-green algae) have been shown to possess an enormous capacity to produce structurally diverse natural products that exhibit a broad spectrum of potent biological activities, including cytotoxic, antifungal, antiparasitic, antiviral, and antibacterial activities. Using mass-spectrometry-guided fractionation together with molecular networking, cyanobacterial field collections from American Samoa and Palmyra Atoll yielded three new cyclic peptides, tutuilamides A-C. Their structures were established by spectroscopic techniques including 1D and 2D NMR, HR-MS, and chemical derivatization. Structure elucidation was facilitated by employing advanced NMR techniques including nonuniform sampling in combination with the 1,1-ADEQUATE experiment. These cyclic peptides are characterized by the presence of several unusual residues including 3-amino-6-hydroxy-2-piperidone and 2-amino-2-butenoic acid, together with a novel vinyl chloride-containing residue. Tutuilamides A-C show potent elastase inhibitory activity together with moderate potency in H-460 lung cancer cell cytotoxicity assays. The binding mode to elastase was analyzed by X-ray crystallography revealing a reversible binding mode similar to the natural product lyngbyastatin 7. The presence of an additional hydrogen bond with the amino acid backbone of the flexible side chain of tutuilamide A, compared to lyngbyastatin 7, facilitates its stabilization in the elastase binding pocket and possibly explains its enhanced inhibitory potency.
  • Formaldehyde as a Chemical Defence Agent of Fruiting Bodies of Mycena rosea and its Role in the Generation of the Alkaloid Mycenarubin C

    Himstedt, Rieke; Wagner, Silke; Jaeger, Robert J. R.; Lieunang Watat, Michèle‐Laure; Backenköhler, Jana; Rupcic, Zeljka; Stadler, Marc; Spiteller, Peter; HZI,Helmholtz-Zentrum für Infektionsforschung GmbH, Inhoffenstr. 7,38124 Braunschweig, Germany. (Wiley, 2020-03-13)
    Mycenarubin C, a previously unknown red pyrroloquinoline alkaloid, was isolated from fruiting bodies of the mushroom Mycena rosea and its structure was elucidated mainly by NMR spectroscopy and mass spectrometry. Unlike mycenarubin A, the major pyrroloquinoline alkaloid in fruiting bodies of M. rosea, mycenarubin C, contains an eight-membered ring with an additional C1 unit that is hitherto unprecedented for pyrroloquinoline alkaloids known in nature. Incubation of mycenarubin A with an excess of formaldehyde revealed that mycenarubin C was generated nearly quantitatively from mycenarubin A. An investigation into the formaldehyde content of fresh fruiting bodies of M. rosea showed the presence of considerable amounts of formaldehyde, with values of 5 μg per gram of fresh weight in fresh fruiting bodies. Although mycenarubin C did not show bioactivity against selected bacteria and fungi, formaldehyde inhibits the growth of the mycoparasite Spinellus fusiger at concentrations present in fruiting bodies of M. rosea. Therefore, formaldehyde might play an ecological role in the chemical defence of M. rosea against S. fusiger. In turn, S. fusiger produces gallic acid-presumably to detoxify formaldehyde by reaction of this aldehyde with amino acids and gallic acid to Mannich
  • The Biomolecular Spectrum Drives Microbial Biology and Functions in Agri-Food-Environments.

    Sharma, Minaxi; Singh, Dhananjaya Pratap; Rangappa, Kanchugarakoppal S; Stadler, Marc; Mishra, Pradeep Kumar; Silva, Roberto Nascimento; Prasad, Ram; Gupta, Vijai Kumar; HZI, Helmholtz Zentrum für Infektionsforschung GmbH, Inhoffenstr. 7, 38124 Braunschweig, Germany. (MDPI, 2020-03-04)
    Microbial biomolecules have huge commercial and industrial potential. In nature, biological interactions are mostly associated with biochemical and biological diversity, especially with the discovery of associated biomolecules from microbes. Within cellular or subcellular systems, biomolecules signify the actual statuses of the microorganisms. Understanding the biological prospecting of the diverse microbial community and their complexities and communications with the environment forms a vital basis for active, innovative biotechnological breakthroughs. Biochemical diversity rather than the specific chemicals that has the utmost biological importance. The identification and quantification of the comprehensive biochemical diversity of the microbial molecules, which generally consequences in a diversity of biological functions, has significant biotechnological potential. Beneficial microbes and their biomolecules of interest can assist as potential constituents for the wide-range of natural product-based preparations and formulations currently being developed on an industrial scale. The understanding of the production methods and functions of these biomolecules will contribute to valorisation of agriculture, food bioprocessing and biopharma, and prevent human diseases related to the environment.
  • Haprolid Inhibits Tumor Growth of Hepatocellular Carcinoma through Rb/E2F and Akt/mTOR Inhibition.

    Xing, Jun; Bhuria, Vikas; Bui, Khac Cuong; Nguyen, Mai Ly Thi; Hu, Zexi; Hsieh, Chih-Jen; Wittstein, Kathrin; Stadler, Marc; Wilkens, Ludwig; Li, Jun; et al. (MDPI, 2020-03-06)
    The efficacy of haprolid was evaluated in human HCC cell lines (Huh-7, Hep3B and HepG2) and xenograft tumors (NMRI-Foxn1nu mice with injection of Hep3B cells). Cytotoxic activity of haprolid was determined by the WST-1 and crystal violet assay. Wound healing, transwell and tumorsphere assays were performed to investigate migration and invasion of HCC cells. Apoptosis and cell-cycle distribution were measured by flow cytometry. The effects of haprolid on the Rb/E2F and Akt/mTOR pathway were examined by immunoblotting and immunohistochemistry.
  • Identification of species as producers of cyclodepsipeptide PF1022 A and resurrection of the genus as inferred from polythetic taxonomy.

    Wittstein, K; Cordsmeier, A; Lambert, C; Wendt, L; Sir, E B; Weber, J; Wurzler, N; Petrini, L E; Stadler, M; HZI,Helmholtz-Zentrum für Infektionsforschung GmbH, Inhoffenstr. 7,38124 Braunschweig, Germany. (Elsevier, 2020-01-26)
    Rosellinia (Xylariaceae) is a large, cosmopolitan genus comprising over 130 species that have been defined based mainly on the morphology of their sexual morphs. The genus comprises both lignicolous and saprotrophic species that are frequently isolated as endophytes from healthy host plants, and important plant pathogens. In order to evaluate the utility of molecular phylogeny and secondary metabolite profiling to achieve a better basis for their classification, a set of strains was selected for a multi-locus phylogeny inferred from a combination of the sequences of the internal transcribed spacer region (ITS), the large subunit (LSU) of the nuclear rDNA, beta-tubulin (TUB2) and the second largest subunit of the RNA polymerase II (RPB2). Concurrently, various strains were surveyed for production of secondary metabolites. Metabolite profiling relied on methods with high performance liquid chromatography with diode array and mass spectrometric detection (HPLC-DAD/MS) as well as preparative isolation of the major components after re-fermentation followed by structure elucidation using nuclear magnetic resonance (NMR) spectroscopy and high resolution mass spectrometry (HR-MS). Two new and nine known isopimarane diterpenoids were identified during our mycochemical studies of two selected Dematophora strains and the metabolites were tested for biological activity. In addition, the nematicidal cyclodepsipeptide PF1022 A was purified and identified from a culture of Rosellinia corticium, which is the first time that this endophyte-derived drug precursor has been identified unambiguously from an ascospore-derived isolate of a Rosellinia species. While the results of this first HPLC profiling were largely inconclusive regarding the utility of secondary metabolites as genus-specific chemotaxonomic markers, the phylogeny clearly showed that species featuring a dematophora-like asexual morph were included in a well-defined clade, for which the genus Dematophora is resurrected. Dematophora now comprises all previously known important plant pathogens in the genus such as D. arcuata, D. bunodes, D. necatrix and D. pepo, while Rosellinia s. str. comprises those species that are known to have a geniculosporium-like or nodulisporium-like asexual morph, or where the asexual morph remains unknown. The extensive morphological studies of L.E. Petrini served as a basis to transfer several further species from Rosellinia to Dematophora, based on the morphology of their asexual morphs. However, most species of Rosellinia and allies still need to be recollected in fresh state, cultured, and studied for their morphology and their phylogenetic affinities before the infrageneric relationships can be clarified.
  • Alpha-Glucosidase- and Lipase-Inhibitory Phenalenones from a New Species of Originating from Thailand.

    Macabeo, Allan Patrick G; Pilapil, Luis Agustin E; Garcia, Katherine Yasmin M; Quimque, Mark Tristan J; Phukhamsakda, Chayanard; Cruz, Allaine Jean C; Hyde, Kevin D; Stadler, Marc; HZI,Helmholtz-Zentrum für Infektionsforschung GmbH, Inhoffenstr. 7,38124 Braunschweig, Germany. (MDPI, 2020-02-20)
    The alpha-glucosidase- and lipase-inhibitory activities of three phenalenones (1-3) and one phenylpropanoid (4) from the ethyl acetate extracts of a Pseudolophiosptoma sp. are described. They represent the first secondary metabolites reported from the genus Pseudolophiostoma. Scleroderolide (1) and sclerodione (2) exhibited potent α-glucosidase- and porcine-lipase-inhibitory activity during primary screening, with better IC50 values compared to the positive controls, N-deoxynojirimycin and orlistat. In silico techniques were employed to validate the probable biological targets and elucidate the mechanism of actions of phenalenones 1 and 2. Both compounds exhibited strong binding affinities to both alpha-glucosidase and porcine lipase through H-bonding and π-π interactions. Interestingly, favorable in silico ADME (absorption, distribution, metabolism, and excretion) properties such as gastrointestinal absorption were also predicted using software.
  • Viriditins from Byssochlamys spectabilis, their stereochemistry and biosynthesis

    López-Fernández, Sebastián; Campisano, Andrea; Schulz, Barbara J.; Steinert, Michael; Stadler, Marc; Surup, Frank; HZI,Helmholtz-Zentrum für Infektionsforschung GmbH, Inhoffenstr. 7,38124 Braunschweig, Germany. (Elsevier, 2020-01-30)
  • Intragenomic polymorphisms in the ITS region of high-quality genomes of the Hypoxylaceae (Xylariales, Ascomycota)

    Stadler, Marc; Lambert, Christopher; Wibberg, Daniel; Kalinowski, Jörn; Cox, Russell J.; Kolařík, Miroslav; Kuhnert, Eric; HZI,Helmholtz-Zentrum für Infektionsforschung GmbH, Inhoffenstr. 7,38124 Braunschweig, Germany. (Springer, 2020-03-01)
    The internal transcribed spacer (ITS) region of the ribosomal DNA (rDNA) has been established (and is generally accepted) as a primary “universal” genetic barcode for fungi for many years, but the actual value for taxonomy has been heavily disputed among mycologists. Recently, twelve draft genome sequences, mainly derived from type species of the family Hypoxylaceae (Xylariales, Ascomycota) and the ex-epitype strain of Xylaria hypoxylon have become available during the course of a large phylogenomic study that was primarily aimed at establishing a correlation between the existing multi-gene-based genealogy with a genome-based phylogeny and the discovery of novel biosynthetic gene clusters encoding for secondary metabolites. The genome sequences were obtained using combinations of Illumina and Oxford nanopore technologies or PacBio sequencing, respectively, and resulted in high-quality sequences with an average N50 of 3.2 Mbp. While the main results will be published concurrently in a separate paper, the current case study was dedicated to the detection of ITS nrDNA copies in the genomes, in an attempt to explain certain incongruities and apparent mismatches between phenotypes and genotypes that had been observed during previous polyphasic studies. The results revealed that all of the studied strains had at least three copies of rDNA in their genomes, with Hypoxylon fragiforme having at least 19 copies of the ITS region, followed by Xylaria hypoxylon with at least 13 copies. Several of the genomes contained 2–3 copies that were nearly identical, but in some cases drastic differences, below 97% identity were observed. In one case, ascribable to the presence of a pseudogene, the deviations of the ITS sequences from the same genome resulted in only ca. 90% of overall homology. These results are discussed in the scope of the current trends to use ITS data for species recognition and segregation of fungi. We propose that additional genomes should be checked for such ITS polymorphisms to reassess the validity of this non-coding part of the fungal DNA for molecular identification.
  • Rickicaryophyllane A, a Caryophyllane from the Ascomyceteous Fungus Hypoxylon rickii and a 10-Norbotryane Congener.

    Wiebach, Vincent; Surup, Frank; Kuhnert, Eric; Stadler, Marc; HZI,Helmholtz-Zentrum für Infektionsforschung GmbH, Inhoffenstr. 7,38124 Braunschweig, Germany. (SAGE Publications, 2016-07-01)
    Herein we report the isolation from Hypoxylon rickii of a new sesquiterpenoid (1) with a caryophyllane skeleton. The planar structure of 1 was elucidat ed by NMR and HRMS data as the 1,12-dihydro-l-hydroxyl derivative of caryophyllenol-I, for which we propose the name rickicaryophyllane A. Its relative stereochemistry was assigned with a series of ID NOESY experiments, while the IR,2S,5R,9R absolute configuration was demonstrated by Mosher's analysis. Besides, we isolated 3-(hydroxymethyl)-1,1,3,5-tetramethyl-1,2,3,5,6,7-hexahydro-4H-inden-4-one (2) as a new 10-norbotryane derivative and the known metabolite orcacetophenone (3).

View more