• Amidochelocardin Overcomes Resistance Mechanisms Exerted on Tetracyclines and Natural Chelocardin.

      Hennessen, Fabienne; Miethke, Marcus; Zaburannyi, Nestor; Loose, Maria; Lukežič, Tadeja; Bernecker, Steffen; Hüttel, Stephan; Jansen, Rolf; Schmiedel, Judith; Fritzenwanker, Moritz; et al. (MDPI, 2020-09-18)
      The reassessment of known but neglected natural compounds is a vital strategy for providing novel lead structures urgently needed to overcome antimicrobial resistance. Scaffolds with resistance-breaking properties represent the most promising candidates for a successful translation into future therapeutics. Our study focuses on chelocardin, a member of the atypical tetracyclines, and its bioengineered derivative amidochelocardin, both showing broad-spectrum antibacterial activity within the ESKAPE (Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter species) panel. Further lead development of chelocardins requires extensive biological and chemical profiling to achieve favorable pharmaceutical properties and efficacy. This study shows that both molecules possess resistance-breaking properties enabling the escape from most common tetracycline resistance mechanisms. Further, we show that these compounds are potent candidates for treatment of urinary tract infections due to their in vitro activity against a large panel of multidrug-resistant uropathogenic clinical isolates. In addition, the mechanism of resistance to natural chelocardin was identified as relying on efflux processes, both in the chelocardin producer Amycolatopsis sulphurea and in the pathogen Klebsiella pneumoniae. Resistance development in Klebsiella led primarily to mutations in ramR, causing increased expression of the acrAB-tolC efflux pump. Most importantly, amidochelocardin overcomes this resistance mechanism, revealing not only the improved activity profile but also superior resistance-breaking properties of this novel antibacterial compound.
    • Carolacton - A macrolide ketocarbonic acid that reduces biofilm formation by the caries- and endocarditis-associated bacterium Streptococcus mutans

      Jansen, Rolf; Microbial Drugs, Helmholtz Centre for Infection Research, Inhoffenstr. 7, 38124 Braunschweig (Germany) (Wiley Interscience, 2010-03)
    • Chlorotonil A, a macrolide with a unique gem-dichloro-1,3-dione functionality from Sorangium cellulosum, So ce1525.

      Gerth, Klaus; Steinmetz, Heinrich; Höfle, Gerhard; Jansen, Rolf; Helmholtz-Zentrum für Infektionsforschung, Inhoffenstrasse 7, 38124 Braunschweig, Germany. (2008)
    • Corallopyronin A for short-course anti-wolbachial, macrofilaricidal treatment of filarial infections.

      Schiefer, Andrea; Hübner, Marc P; Krome, Anna; Lämmer, Christine; Ehrens, Alexandra; Aden, Tilman; Koschel, Marianne; Neufeld, Helene; Chaverra-Muñoz, Lillibeth; Jansen, Rolf; et al. (PLOS, 2020-12-07)
      Current efforts to eliminate the neglected tropical diseases onchocerciasis and lymphatic filariasis, caused by the filarial nematodes Onchocerca volvulus and Wuchereria bancrofti or Brugia spp., respectively, are hampered by lack of a short-course macrofilaricidal-adult-worm killing-treatment. Anti-wolbachial antibiotics, e.g. doxycycline, target the essential Wolbachia endosymbionts of filariae and are a safe prototype adult-worm-sterilizing and macrofilaricidal regimen, in contrast to standard treatments with ivermectin or diethylcarbamazine, which mainly target the microfilariae. However, treatment regimens of 4-5 weeks necessary for doxycycline and contraindications limit its use. Therefore, we tested the preclinical anti-Wolbachia drug candidate Corallopyronin A (CorA) for in vivo efficacy during initial and chronic filarial infections in the Litomosoides sigmodontis rodent model. CorA treatment for 14 days beginning immediately after infection cleared >90% of Wolbachia endosymbionts from filariae and prevented development into adult worms. CorA treatment of patently infected microfilaremic gerbils for 14 days with 30 mg/kg twice a day (BID) achieved a sustained reduction of >99% of Wolbachia endosymbionts from adult filariae and microfilariae, followed by complete inhibition of filarial embryogenesis resulting in clearance of microfilariae. Combined treatment of CorA and albendazole, a drug currently co-administered during mass drug administrations and previously shown to enhance efficacy of anti-Wolbachia drugs, achieved microfilarial clearance after 7 days of treatment at a lower BID dose of 10 mg/kg CorA, a Human Equivalent Dose of 1.4 mg/kg. Importantly, this combination led to a significant reduction in the adult worm burden, which has not yet been published with other anti-Wolbachia candidates tested in this model. In summary, CorA is a preclinical candidate for filariasis, which significantly reduces treatment times required to achieve sustained Wolbachia depletion, clearance of microfilariae, and inhibition of embryogenesis. In combination with albendazole, CorA is robustly macrofilaricidal after 7 days of treatment and fulfills the Target Product Profile for a macrofilaricidal drug.
    • Cyclic depsipeptides, ichthyopeptins A and B, from Microcystis ichthyoblabe.

      Zainuddin, Elmi N; Mentel, Renate; Wray, Victor; Jansen, Rolf; Nimtz, Manfred; Lalk, Michael; Mundt, Sabine; Institute of Pharmacy, Friedrich-Ludwig-Jahnstrasse 17, Ernst-Moritz-Arndt University, D-17487 Greifswald, Germany. (2007-07)
      Bioassay-guided isolation of antiviral compounds from the cultured cyanobacterium Microcystis ichthyoblabe provided two novel cyclic depsipeptides, ichthyopeptins A (1) and B (2). Their structures were determined by 1D (1H and 13C) and 2D (COSY, TOCSY, ROESY, HMQC, and HMBC) NMR spectra, ESIMS-MS, and amino acid analysis. The fraction containing both cyclic depsipeptides exhibited antiviral activity against influenza A virus with an IC50 value of 12.5 microg/mL.
    • Edonamides, the first secondary metabolites from the recently described myxobacterium Aggregicoccus edonensis

      Karwehl, Sabrina; Mohr, Kathrin I.; Jansen, Rolf; Sood, Sakshi; Bernecker, Steffen; Stadler, Marc; Helmholtz Centre for Infection Research,Inhoffenstr. 7; 38124 Braunschweig, Germany. (2015-11)
    • GE23077 binds to the RNA polymerase 'i' and 'i+1' sites and prevents the binding of initiating nucleotides.

      Zhang, Yu; Degen, David; Ho, Mary X; Sineva, Elena; Ebright, Katherine Y; Ebright, Yon W; Mekler, Vladimir; Vahedian-Movahed, Hanif; Feng, Yu; Yin, Ruiheng; et al. (2014)
      Using a combination of genetic, biochemical, and structural approaches, we show that the cyclic-peptide antibiotic GE23077 (GE) binds directly to the bacterial RNA polymerase (RNAP) active-center 'i' and 'i+1' nucleotide binding sites, preventing the binding of initiating nucleotides, and thereby preventing transcription initiation. The target-based resistance spectrum for GE is unusually small, reflecting the fact that the GE binding site on RNAP includes residues of the RNAP active center that cannot be substituted without loss of RNAP activity. The GE binding site on RNAP is different from the rifamycin binding site. Accordingly, GE and rifamycins do not exhibit cross-resistance, and GE and a rifamycin can bind simultaneously to RNAP. The GE binding site on RNAP is immediately adjacent to the rifamycin binding site. Accordingly, covalent linkage of GE to a rifamycin provides a bipartite inhibitor having very high potency and very low susceptibility to target-based resistance. DOI: http://dx.doi.org/10.7554/eLife.02450.001.
    • Kenalactams A-E, Polyene Macrolactams Isolated from Nocardiopsis CG3.

      Messaoudi, Omar; Sudarman, Enge; Bendahou, Mourad; Jansen, Rolf; Stadler, Marc; Wink, Joachim; HZI,Helmholtz-Zentrum für Infektionsforschung GmbH, Inhoffenstr. 7,38124 Braunschweig, Germany. (American Cemical Society (ACS), 2019-05-24)
      In our screening program for new biologically active secondary metabolites, a new strain, Nocardiopsis CG3 (DSM 106572), isolated from the saltpan of Kenadsa, was found to produce five new polyene macrolactams, the kenalactams A-E (1-5). Their structures were elucidated by spectral methods (NMR and HRESIMS), and the absolute configuration was derived by chemical derivatization (Mosher's method). Through a feeding experiment, alanine was proven to be the nitrogen-bearing starter unit involved in biosynthesis of the polyketide kenalactam A (1). Kenalactam E (5) was cytotoxic against human prostate cancer PC-3 cells with an IC50 value of 2.1 μM.
    • Lanyamycin, a macrolide antibiotic from Sorangium cellulosum, strain Soce 481 (Myxobacteria)

      Mulwa, Lucky S.; Jansen, Rolf; Praditya, Dimas F.; Mohr, Kathrin I.; Okanya, Patrick W.; Wink, Joachim; Steinmann, Eike; Stadler, Marc; HZI,Helmholtz-Zentrum für Infektionsforschung GmbH, Inhoffenstr. 7,38124 Braunschweig, Germany. (Beilstein-Institut, 2018-06-26)
      Lanyamycin (1/2), a secondary metabolite occurring as two epimers, was isolated from the myxobacterium Sorangium cellulosum, strain Soce 481. The structures of both epimers were elucidated from HRESIMS and 1D and 2D NMR data and the relative configuration of their macrolactone ring was assigned based on NOE and vicinal 1H NMR coupling constants and by calculation of a 3D model. Lanyamycin inhibited HCV infection into mammalian liver cells with an IC50 value of 11.8 µM, and exhibited a moderate cytotoxic activity against the mouse fibroblast cell line L929 and the human nasopharyngeal cell line KB3 with IC50 values of 3.1 and 1.5 μM, respectively, and also suppressed the growth of the Gram-positive bacterium Micrococcus luteus.
    • Opening and closing of the bacterial RNA polymerase clamp.

      Chakraborty, Anirban; Wang, Dongye; Ebright, Yon W; Korlann, You; Kortkhonjia, Ekaterine; Kim, Taiho; Chowdhury, Saikat; Wigneshweraraj, Sivaramesh; Irschik, Herbert; Jansen, Rolf; et al. (2012-08-03)
      Using single-molecule fluorescence resonance energy transfer, we have defined bacterial RNA polymerase (RNAP) clamp conformation at each step in transcription initiation and elongation. We find that the clamp predominantly is open in free RNAP and early intermediates in transcription initiation but closes upon formation of a catalytically competent transcription initiation complex and remains closed during initial transcription and transcription elongation. We show that four RNAP inhibitors interfere with clamp opening. We propose that clamp opening allows DNA to be loaded into and unwound in the RNAP active-center cleft, that DNA loading and unwinding trigger clamp closure, and that clamp closure accounts for the high stability of initiation complexes and the high stability and processivity of elongation complexes.
    • Six Heterocyclic Metabolites from the Myxobacterium Labilithrix luteola.

      Mulwa, Lucky S; Jansen, Rolf; Praditya, Dimas F; Mohr, Kathrin I; Wink, Joachim; Steinmann, Eike; Stadler, Marc; Helmholtz-Zentrum für Infektionsforschung GmbH, Inhoffenstr. 7, 38124 Braunschweig, Germany. (2018-02-28)
      Two new secondary metabolites, labindole A [2-methyl-3-(2-nitroethyl)-3H-indole] (1) and labindole B [2-methyl-3-(2-nitrovinyl)-3H-indole] (2), were isolated from the myxobacteriumLabilithrixluteola(DSM 27648T). Additionally, four metabolites3,4,5and6already known from other sources were obtained. Their structures were elucidated from high resolution electrospray ionisation mass spectrometry (HRESIMS) and 1D and 2D nuclear magnetic resonance (NMR) spectroscopy data and their relative configuration was assigned based on nuclear Overhauser effect (NOE) and vicinal ¹H-NMR coupling data. The compounds where tested for biological activities; labindoles A (1) and B (2) exhibited significant activity against Hepatitis C Virus, 9H-carbazole (3), 3-chloro-9H-carbazole (4) and 4-hydroxymethyl-quinoline (5) showed antifungal activities. Moreover, compound3had weak to moderate antibacterial activities, while labindoles A (1) and B (2) were devoid of significant antifungal and antibacterial effects.
    • Solubility and Stability Enhanced Oral Formulations for the Anti-Infective Corallopyronin A.

      Krome, Anna K; Becker, Tim; Kehraus, Stefan; Schiefer, Andrea; Steinebach, Christian; Aden, Tilman; Frohberger, Stefan J; López Mármol, Álvaro; Kapote, Dnyaneshwar; Jansen, Rolf; et al. (MDPI, 2020-11-18)
      Novel-antibiotics are urgently needed to combat an increase in morbidity and mortality due to resistant bacteria. The preclinical candidate corallopyronin A (CorA) is a potent antibiotic against Gram-positive and some Gram-negative pathogens for which a solid oral formulation was needed for further preclinical testing of the active pharmaceutical ingredient (API). The neat API CorA is poorly water-soluble and instable at room temperature, both crucial characteristics to be addressed and overcome for use as an oral antibiotic. Therefore, amorphous solid dispersion (ASD) was chosen as formulation principle. The formulations were prepared by spray-drying, comprising the water-soluble polymers povidone and copovidone. Stability (high-performance liquid chromatography, Fourier-transform-infrared spectroscopy, differential scanning calorimetry), dissolution (biphasic dissolution), and solubility (biphasic dissolution, Pion's T3 apparatus) properties were analyzed. Pharmacokinetic evaluations after intravenous and oral administration were conducted in BALB/c mice. The results demonstrated that the ASD formulation principle is a suitable stability- and solubility-enhancing oral formulation strategy for the API CorA to be used in preclinical and clinical trials and as a potential market product.
    • Structures of an RNA polymerase promoter melting intermediate elucidate DNA unwinding.

      Boyaci, Hande; Chen, James; Jansen, Rolf; Darst, Seth A; Campbell, Elizabeth A; HZI,Helmholtz-Zentrum für Infektionsforschung GmbH, Inhoffenstr. 7,38124 Braunschweig, Germany. (Nature publishing group, 2019-01-09)
      A key regulated step of transcription is promoter melting by RNA polymerase (RNAP) to form the open promoter complex
    • Total Synthesis of Thuggacin cmc-A and Its Structure Determination.

      Tsutsumi, Tomohiro; Matsumoto, Moe; Iwasaki, Hitomi; Tomisawa, Kei; Komine, Keita; Fukuda, Hayato; Eustache, Jacques; Jansen, Rolf; Hatakeyama, Susumi; Ishihara, Jun; et al. (American Chemical Society, 2021-06-15)
      The first total synthesis of thuggacin cmc-A and the determination of the absolute structure are described. The thuggacin family of antibiotics is of great interest due to the antibiotic activity against Mycobacterium tuberculosis. Based on the assumption that seven stereogenic centers in thuggacin cmc-A would share the same stereochemistry as thuggacin-A, all stereogenic centers of thuggacin cmc-A were strictly constructed in a stereocontrolled manner. The total synthesis allowed its stereostructure to be fully confirmed.