• The amazing potential of fungi: 50 ways we can exploit fungi industrially

      Hyde, Kevin D.; Xu, Jianchu; Rapior, Sylvie; Jeewon, Rajesh; Lumyong, Saisamorn; Niego, Allen Grace T.; Abeywickrama, Pranami D.; Aluthmuhandiram, Janith V.S.; Brahamanage, Rashika S.; Brooks, Siraprapa; et al. (Springer, 2019-07-31)
      Fungi are an understudied, biotechnologically valuable group of organisms. Due to the immense range of habitats that fungi inhabit, and the consequent need to compete against a diverse array of other fungi, bacteria, and animals, fungi have developed numerous survival mechanisms. The unique attributes of fungi thus herald great promise for their application in biotechnology and industry. Moreover, fungi can be grown with relative ease, making production at scale viable. The search for fungal biodiversity, and the construction of a living fungi collection, both have incredible economic potential in locating organisms with novel industrial uses that will lead to novel products. This manuscript reviews fifty ways in which fungi can potentially be utilized as biotechnology. We provide notes and examples for each potential exploitation and give examples from our own work and the work of other notable researchers. We also provide a flow chart that can be used to convince funding bodies of the importance of fungi for biotechnological research and as potential products. Fungi have provided the world with penicillin, lovastatin, and other globally significant medicines, and they remain an untapped resource with enormous industrial potential.
    • Discovery of novel biologically active secondary metabolites from Thai mycodiversity with anti-infective potential

      Kuephadungphan, Wilawan; Macabeo, Allan Patrick G.; Luangsa-Ard, Janet Jennifer; Stadler, Marc; HZI,Helmholtz-Zentrum für Infektionsforschung GmbH, Inhoffenstr. 7,38124 Braunschweig, Germany. (Elsevier, 2021-01-01)
      This mini-review is dedicated to the summary of results of the EU-funded Project “Golden Mycological Triangle” (acronym GoMyTri), which was carried out in collaboration of three research infrastructures in Germany, the Netherlands and Thailand during the years 2014–2018. The cooperation explored the mycological and microbiological biodiversity of Europe and Southeast Asia with regard to the search for the badly needed new antibiotics and other biologically active secondary metabolites. The project was conducted to foster international collaboration networks, know-how exchange and interdisciplinary training of young scientists. The first two years of the project were mainly dedicated to field work, and several hundreds of fungal cultures have been isolated from material mostly collected in Thailand. These fungal strains were characterized by morphological and molecular phylogenetic methods and several new taxa were discovered. The cultures underwent screening for antimicrobial and nematicidal metabolites and a number of bioactive metabolites have already been found, isolated and characterized. Several large phylogenetic studies have already been published that resulted from the project work. The results were also brought to the attention of the scientific community as well as the general public through various dissemination events. Based on the tremendous success of this project, a follow-up project application including additional partners from Africa and further European countries has recently been filed and approved, and the international, interdisciplinary collaboration will now continue in the new RISE-MSCA-Project (acronym “Mycobiomics”).
    • Studies on the biologically active secondary metabolites of the new spider parasitic fungus Gibellula gamsii

      Kuephadungphan, Wilawan; Macabeo, Allan Patrick G.; Luangsa-Ard, Janet Jennifer; Tasanathai, Kanoksri; Thanakitpipattana, Donnaya; Phongpaichit, Souwalak; Yuyama, Kamila; Stadler, Marc
    • Tetrasubstituted α-pyrone derivatives from the endophytic fungus, Neurospora udagawae

      Macabeo, Allan Patrick G.; Cruz, Allaine Jean C.; Narmani, Abolfazl; Arzanlou, Mahdi; Babai-Ahari, Asadollah; Pilapil, Luis Agustin E.; Garcia, Katherine Yasmin M.; Huch, Volker; Stadler, Marc; HZI,Helmholtz-Zentrum für Infektionsforschung GmbH, Inhoffenstr. 7,38124 Braunschweig, Germany. (Elsevier BV, 2020-02)
      Two new -pyrone derivatives, udagawanones A (1) and B (2), along with the known compounds (Z)-4-hydroxy-3-(3-hydroxy-3-methylbut-1-en-1-yl)benzoic acid (3), isosclerone (4), cyclo-(L-Leu-L-Pro) (5), and cyclo-(L-Pro-L-Tyr) (6), were isolated from cultures of the endophyte Neurospora udagawae. Their structures were elucidated by extensive spectroscopic methods and single crystal X-ray diffraction. Both compounds feature oxidized functionalities at the C-2 position not previously observed in other tetrasubstituted -pyrones from fungi. Compound 1 exhibited moderate antibacterial (vs. Staphylococcus aureus) and antifungal (vs. Rhodoturula glutinis) activities and cytotoxicity against KB3.1 cells.