• Amycolatomycins A and B, Cyclic Hexapeptides Isolated from an amycolatopsis sp. 195334CR.

      Primahana, Gian; Risdian, Chandra; Mozef, Tjandrawati; Wink, Joachim; Surup, Frank; Stadler, Marc; HZI,Helmholtz-Zentrum für Infektionsforschung GmbH, Inhoffenstr. 7,38124 Braunschweig, Germany. (MDPI, 2021-03-05)
      The rare actinobacterium Amycolatopsis sp. strain 195334CR was found to produce previously undescribed cyclic hexapeptides, which we named amycolatomycin A and B (1 and 2). Their planar structures were determined by high-resolution mass spectrometry as well as extensive 1D and 2D NMR spectroscopy, while the absolute stereochemistry of its amino acids were determined by Marfey's method. Moreover, 1 and 2 differ by the incorporation of l-Ile and l-allo-Ile, respectively, whose FDVA (Nα-(2,4-Dinitro-5-fluorphenyl)-L-valinamide) derivatives were separated on a C4 column. Their hallmark in common is a unique 2,6-dichloro-tryptophan amino acid unit. Amycolatomycin A (1) exhibited weak activity against Bacillus subtilis DSM 10 (minimum inhibitory concentration (MIC) = 33.4 µg/mL).
    • Antifungal metabolites from marine-derived Streptomyces sp. AMA49 against Pyricularia oryzae

      Buatong, Jirayu; Rukachaisirikul, Vatcharin; Sangkanu, Suthinee; Surup, Frank; Phongpaichit, Souwalak; HZI,Helmholtz-Zentrum für Infektionsforschung GmbH, Inhoffenstr. 7,38124 Braunschweig, Germany. (Oriental Scientific Pub Co(according to Zezoc), 2019-01-01)
      Marine-derived actinobacteria are considered as potential sources of bioactive metabolites including antifungal substances. Fifteen out of 155 marine-derived actinobacteria exhibited strong antifungal activity against the rice blast fungus Pyricularia oryzae. Their extracts were further determined for minimum inhibitory concentrations (MIC) and minimum fungicidal concentrations (MFC). Ethyl acetate extract from the strain AMA49 and its subfraction AMA49F1 strongly inhibited hyphal growth of various P. oryzae strains with MICs (8 to 16µg/ml) and MFCs (16 to 128µg/ml) comparable to propiconazole. Both extracts destroyed fungal membrane and organelles, completely inhibited conidial germination, appressorium formation, and were non-toxic to Galleria mellonella. High performance liquid chromatography/mass spectrometry identified oligomycin A and its derivatives as the active components of AMA49F1 besides several diketopiperazines. AMA49 was identified as a Streptomyces sp. based on morphological characteristics and 16S rDNA sequence analysis. The results suggest that the Streptomyces sp. strain AMA49 is a potential biocontrol agent against rice blast pathogen P. oryzae. This is the first report on the inhibitory effect of the marine-derived Streptomyces extract containing oligomycin A and its derivatives on mycelial growth, conidial germination and appressorium formation of P. oryzae.
    • Antifungal Sesquiterpenoids, Rhodocoranes, from Submerged Cultures of the Wrinkled Peach Mushroom, Rhodotus palmatus.

      Sandargo, Birthe; Michehl, Maira; Stadler, Marc; Surup, Frank; HZI,Helmholtz-Zentrum für Infektionsforschung GmbH, Inhoffenstr. 7,38124 Braunschweig, Germany. (Elsevier, 2019-12-10)
      Seven previously unknown sesquiterpenoids and norsesquiterpenoids, rhodocoranes F-L (1-7), were isolated from the fermentation broth of the basidiomycete Rhodotus palmatus. Their structures were elucidated utilizing 1D and 2D NMR techniques as well as HRESIMS; they are unusual noracorane, spiro[4.4]nonene, and acorane-type sesquiterpenoids. They include the first naturally occurring cyclopentylidenefuranones (3-5) and the new tricyclic scaffold of 7. Metabolites 1-7 exhibited a general mild antimycotic activity, while 1-3 also displayed cytotoxic effects.
    • Antiviral 4-Hydroxypleurogrisein and Antimicrobial Pleurotin Derivatives from Cultures of the Nematophagous Basidiomycete .

      Sandargo, Birthe; Thongbai, Benjarong; Praditya, Dimas; Steinmann, Eike; Stadler, Marc; Surup, Frank; HZI,Helmholtz-Zentrum für Infektionsforschung GmbH, Inhoffenstr. 7,38124 Braunschweig, Germany; TWINCORE, Zentrum für experimentelle und klinische Infektionsforschung GmbH,Feodor-Lynen Str. 7, 30625 Hannover, Germany. (2018-10-19)
      4-Hydroxypleurogrisein, a congener of the anticancer-lead compound pleurotin, as well as six further derivatives were isolated from the basidiomycete Hohenbuehelia grisea, strain MFLUCC 12-0451. The structures were elucidated utilizing high resolution electron spray ionization mass spectrometry (HRESIMS) and 1D and 2D nuclear magnetic resonance (NMR) spectral data and evaluated for their biological activities; for leucopleurotin, we provide Xray data. While most congeners showed moderate antimicrobial and cytotoxic activity, 4-hydroxypleurogrisein emerged as an inhibitor of hepatitis C virus infectivity in mammalian liver cells.
    • Antiviral Meroterpenoid Rhodatin and Sesquiterpenoids Rhodocoranes A-E from the Wrinkled Peach Mushroom, Rhodotus palmatus.

      Sandargo, Birthe; Michehl, Maira; Praditya, Dimas; Steinmann, Eike; Stadler, Marc; Surup, Frank; HZI,Helmholtz-Zentrum für Infektionsforschung GmbH, Inhoffenstr. 7,38124 Braunschweig, Germany; TWINCORE, Zentrum für experimentelle und klinische Infektionsforschung GmbH,Feodor-Lynen Str. 7, 30625 Hannover, Germany. (American Chemical Society, 2019-05-03)
      Rhodatin (1), a meroterpenoid featuring a unique pentacyclic scaffold with both spiro and spiroketal centers, and five unusual acorane-type sesquiterpenoids, named rhodocoranes A-E (2-6, respectively), are the first natural products isolated from the basidiomycete Rhodotus palmatus. Their structures were elucidated by two-dimensional NMR experiments and HRESIMS, while the absolute configuration of the substance family was determined by Mosher's method utilizing 2. Rhodatin strongly inhibited hepatitis C virus, whereas 4 displayed cytotoxicity and selective antifungal activity.
    • Biosynthesis of oxygenated brasilane terpene glycosides involves a promiscuous N-acetylglucosamine transferase.

      Feng, Jin; Surup, Frank; Hauser, Maurice; Miller, Anna; Wennrich, Jan-Peer; Stadler, Marc; Cox, Russell J; Kuhnert, Eric; HZI,Helmholtz-Zentrum für Infektionsforschung GmbH, Inhoffenstr. 7,38124 Braunschweig, Germany. (Royal Sciety of Chemistry, 2020-09-16)
      Investigation of the metabolome of the ascomycete Annulohypoxylon truncatum led to the identification of novel oxygenated brasilane glycosides and the revision of the stereochemistry of the brasilane A octahydro-1H-indene core scaffold to trans. The bra biosynthetic gene cluster containing five genes (braA-braE) was identified and verified by heterologous expression experiments in Aspergillus oryzae demonstrating that BraC is a multifunctional P450 monooxygenase. In vitro studies of BraB revealed it to be a very rare fungal UDP-GlcNAc dependent N-acetylglucosamine transferase. UDP-glucose is also accepted as a donor, and a broad acceptor substrate tolerance for various primary and secondary alcohols was observed.
    • Botryane, noreudesmane and abietane terpenoids from the ascomycete Hypoxylon rickii.

      Kuhnert, Eric; Surup, Frank; Wiebach, Vincent; Bernecker, Steffen; Stadler, Marc; Helmholtz Centre for infection research, Inhoffenstr. 7, D-38124 Braunschweig, Germany. (2015-09)
      In the course of our screening for new bioactive natural products, a culture of Hypoxylon rickii, a xylariaceous ascomycete collected from the Caribbean island Martinique, was identified as extraordinary prolific producer of secondary metabolites. Ten metabolites of terpenoid origin were isolated from submerged cultures of this species by preparative HPLC. Their structures were elucidated using spectral techniques including 2D NMR and HRESIMS. Three of the compounds were elucidated as new botryanes (1-3) along with three known ones, i.e. (3aS)-3a,5,5,8-tetramethyl-3,3a,4,5-tetrahydro-1H-cyclopenta[de]isochromen-1-one (4), (3aS,8R)-3a,5,5,8-tetramethyl-3,3a,4,5,7,8-hexahydro-1H-cyclopenta[de]isochromen-1-one (5) and botryenanol (6). Further three new sesquiterpenoids featured a 14-noreudesmane-type skeleton and were named hypoxylan A-C (7-9); the diterpenoid rickitin A (10) contains an abietane-type backbone. Compounds 1, 2, 3, 7, and 10 showed cytotoxic effects against murine cells.
    • Cycloheximide-Producing Associated With and Fungus-Farming Ambrosia Beetles.

      Grubbs, Kirk J; Surup, Frank; Biedermann, Peter H W; McDonald, Bradon R; Klassen, Jonathan L; Carlson, Caitlin M; Clardy, Jon; Currie, Cameron R; HZI,Helmholtz-Zentrum für Infektionsforschung GmbH, Inhoffenstr. 7,38124 Braunschweig, Germany. (Frontiers, 2020-09-24)
      Symbiotic microbes help a myriad of insects acquire nutrients. Recent work suggests that insects also frequently associate with actinobacterial symbionts that produce molecules to help defend against parasites and predators. Here we explore a potential association between Actinobacteria and two species of fungus-farming ambrosia beetles, Xyleborinus saxesenii and Xyleborus affinis. We isolated and identified actinobacterial and fungal symbionts from laboratory reared nests, and characterized small molecules produced by the putative actinobacterial symbionts. One 16S rRNA phylotype of Streptomyces (XylebKG-1) was abundantly and consistently isolated from the galleries and adults of X. saxesenii and X. affinis nests. In addition to Raffaelea sulphurea, the symbiont that X. saxesenii cultivates, we also repeatedly isolated a strain of Nectria sp. that is an antagonist of this mutualism. Inhibition bioassays between Streptomyces griseus XylebKG-1 and the fungal symbionts from X. saxesenii revealed strong inhibitory activity of the actinobacterium toward the fungal antagonist Nectria sp. but not the fungal mutualist R. sulphurea. Bioassay guided HPLC fractionation of S. griseus XylebKG-1 culture extracts, followed by NMR and mass spectrometry, identified cycloheximide as the compound responsible for the observed growth inhibition. A biosynthetic gene cluster putatively encoding cycloheximide was also identified in S. griseus XylebKG-1. The consistent isolation of a single 16S phylotype of Streptomyces from two species of ambrosia beetles, and our finding that a representative isolate of this phylotype produces cycloheximide, which inhibits a parasite of the system but not the cultivated fungus, suggests that these actinobacteria may play defensive roles within these systems.
    • Cytochalasans Act as Inhibitors of Biofilm Formation of Staphylococcus Aureus.

      Yuyama, Kamila Tomoko; Wendt, Lucile; Surup, Frank; Kretz, Robin; Chepkirui, Clara; Wittstein, Kathrin; Boonlarppradab, Chollaratt; Wongkanoun, Sarunyou; Luangsa-Ard, Jennifer; Stadler, Marc; et al. (MPDI, 2018-10-30)
      During the course of our ongoing work to discover new inhibitors of biofilm formation of Staphylococcus aureus from fungal sources, we observed biofilm inhibition by cytochalasans isolated from cultures of the ascomycete Hypoxylon fragiforme for the first time. Two new compounds were purified by a bioassay-guided fractionation procedure; their structures were elucidated subsequently by nuclear magnetic resonance (NMR) spectroscopy and high-resolution mass spectrometry (HR-MS). This unexpected finding prompted us to test further cytochalasans from other fungi and from commercial sources for comparison. Out of 21 cytochalasans, 13 showed significant inhibition of Staphylococcus aureus biofilm formation at subtoxic levels. These findings indicate the potential of cytochalasans as biofilm inhibitors for the first time, also because the minimum inhibitory concentrations (MIC) are independent of the anti-biofilm activities. However, cytochalasans are known to be inhibitors of actin, making some of them very toxic for eukaryotic cells. Since the chemical structures of the tested compounds were rather diverse, the inclusion of additional derivatives, as well as the evaluation of their selectivity against mammalian cells vs. the bacterium, will be necessary as next step in order to develop structure-activity relationships and identify the optimal candidates for development of an anti-biofilm agent. View Full-Text
    • Cytotoxic, antimicrobial and antiviral secondary metabolites produced by the plant pathogenic fungus Cytospora sp. CCTU A309.

      Narmani, Abolfazl; Teponno, Rémy Bertrand; Arzanlou, Mahdi; Surup, Frank; Helaly, Soleiman E; Wittstein, Kathrin; Praditya, Dimas F; Babai-Ahari, Asadollah; Steinmann, Eike; Stadler, Marc; et al. (Elsevier, 2019-04-01)
      Chemical analysis of extracts from cultures of the plant pathogenic fungus Cytospora sp. strain CCTU A309 collected in Iran led to the isolation of two previously unreported heptanedioic acid derivatives namely (2R,3S) 2-hydroxy-3-phenyl-4-oxoheptanedioic acid (1) and (2S,3S) 2-hydroxy-3-phenyl-4-oxoheptanedioic acid (2) as diastereomers, four previously undescribed prenylated p-terphenyl quinones 3-6 in addition to five known metabolites. Their structures were elucidated on the basis of extensive spectroscopic analysis and high-resolution mass spectrometry. For metabolites 1 and 2, the absolute configurations at C-2 were deduced from comparison of the 1H NMR difference of their (S)- and (R)-phenylglycine methyl ester derivatives while the relative configurations were tentatively assigned by a J-based analysis and confirmed by comparison of 13C chemical shifts to literature data. The isolated compounds were tested for their cytotoxic, antimicrobial (including biofilm inhibition), antiviral, and nematicidal activities. While only moderate antimicrobial effects were observed, the terphenyl quinone derivatives 3-6 and leucomelone (10) exhibited significant cytotoxicity against the mouse fibroblast L929 and cervix carcinoma KB-3-1 cell lines with IC50 values ranging from 2.4 to 26 μg/mL. Furthermore, metabolites 4-6 showed interesting antiviral activity against hepatitis C virus (HCV).
    • Discovery of a new species of the Hypoxylon rubiginosum complex from Iran and antagonistic activities of spp. against the Ash Dieback pathogen, Hymenoscyphus fraxineus,, in dual culture.

      Pourmoghaddam, Mohammad Javad; Lambert, Christopher; Surup, Frank; Khodaparast, Seyed Akbar; Krisai-Greilhuber, Irmgard; Voglmayr, Hermann; Stadler, Marc; HZI,Helmholtz-Zentrum für Infektionsforschung GmbH, Inhoffenstr. 7,38124 Braunschweig, Germany. (PenSoft Publishers, 2020-04-24)
      During a survey of xylarialean fungi in Northern Iran, several specimens that showed affinities to the Hypoxylon rubiginosum complex were collected and cultured. A comparison of their morphological characters, combined with a chemotaxonomic study based on high performance liquid chromatography, coupled with diode array detection and mass spectrometry (HPLC-DAD/MS) and a multi-locus phylogeny based on ITS, LSU, rbp2 and tub2 DNA sequences, revealed a new species here described as Hypoxylon guilanense. In addition, Hypoxylon rubiginosumsensu stricto was also encountered. Concurrently, an endophytic isolate of the latter species showed strong antagonistic activities against the Ash Dieback pathogen, Hymenoscyphus fraxineus, in a dual culture assay in our laboratory. Therefore, we decided to test the new Iranian fungi for antagonistic activities against the pathogen, along with several cultures of other Hypoxylon species that are related to H. rubiginosum. Our results suggest that the antagonistic effects of Hypoxylon spp. against Hym. fraxineus are widespread and that they are due to the production of antifungal phomopsidin derivatives in the presence of the pathogen.
    • The Effect of Cytochalasans on the Actin Cytoskeleton of Eukaryotic Cells and Preliminary Structure⁻Activity Relationships.

      Kretz, Robin; Wendt, Lucile; Wongkanoun, Sarunyou; Luangsa-Ard, J Jennifer; Surup, Frank; Helaly, Soleiman E; Noumeur, Sara R; Stadler, Marc; Stradal, Theresia E B; HZI, Helmholtz Zentrum für Infektionsforschung GmbH, Inhoffenstr. 7, 38124 Braunschweig Germany. (MDPI, 2019-02-19)
      In our ongoing search for new bioactive fungal metabolites, two new cytochalasans were isolated from stromata of the hypoxylaceous ascomycete Hypoxylon fragiforme. Their structures were elucidated via high-resolution mass spectrometry (HR-MS) and nuclear magnetic resonance (NMR) spectroscopy. Together with 23 additional cytochalasans isolated from ascomata and mycelial cultures of different Ascomycota, they were tested on their ability to disrupt the actin cytoskeleton of mammal cells in a preliminary structure⁻activity relationship study. Out of all structural features, the presence of hydroxyl group at the C7 and C18 residues, as well as their stereochemistry, were determined as important factors affecting the potential to disrupt the actin cytoskeleton. Moreover, reversibility of the actin disrupting effects was tested, revealing no direct correlations between potency and reversibility in the tested compound group. Since the diverse bioactivity of cytochalasans is interesting for various applications in eukaryotes, the exact effect on eukaryotic cells will need to be determined, e.g., by follow-up studies involving medicinal chemistry and by inclusion of additional natural cytochalasans. The results are also discussed in relation to previous studies in the literature, including a recent report on the anti-Biofilm activities of essentially the same panel of compounds against the pathogenic bacterium, Staphylococcus aureus.
    • The Effect of Cytochalasans on the Actin Cytoskeleton of Eukaryotic Cells and Preliminary Structure⁻Activity Relationships.

      Kretz, Robin; Wendt, Lucile; Wongkanoun, Sarunyou; Luangsa-Ard, J Jennifer; Surup, Frank; Helaly, Soleiman E; Noumeur, Sara R; Stadler, Marc; Stradal, Theresia E B; HZI, Helmholtz Zentrum für Infektionsforschung GmbH, Inhoffenstr. 7, 38124 Braunschweig Germany. (MPDI, 2019-02-19)
      In our ongoing search for new bioactive fungal metabolites, two new cytochalasans were isolated from stromata of the hypoxylaceous ascomycete Hypoxylon fragiforme. Their structures were elucidated via high-resolution mass spectrometry (HR-MS) and nuclear magnetic resonance (NMR) spectroscopy. Together with 23 additional cytochalasans isolated from ascomata and mycelial cultures of different Ascomycota, they were tested on their ability to disrupt the actin cytoskeleton of mammal cells in a preliminary structure–activity relationship study. Out of all structural features, the presence of hydroxyl group at the C7 and C18 residues, as well as their stereochemistry, were determined as important factors affecting the potential to disrupt the actin cytoskeleton. Moreover, reversibility of the actin disrupting effects was tested, revealing no direct correlations between potency and reversibility in the tested compound group. Since the diverse bioactivity of cytochalasans is interesting for various applications in eukaryotes, the exact effect on eukaryotic cells will need to be determined, e.g., by follow-up studies involving medicinal chemistry and by inclusion of additional natural cytochalasans. The results are also discussed in relation to previous studies in the literature, including a recent report on the anti-Biofilm activities of essentially the same panel of compounds against the pathogenic bacterium, Staphylococcus aureus. View Full-Text
    • Elsinopirins A-D, Decalin Polyketides from the Ascomycete Elsinoё pyri.

      Surup, Frank; Pommerehne, Kathrin; Schroers, Hans-Josef; Stadler, Marc; Helmholtz-Zentrum für Infektionsforschung GmbH, Inhoffenstr. 7, 38124 Braunschweig, Germany. (2018-02-05)
      In course of our screening for new secondary metabolites from ecological niche specialized, phytopathogenic fungi, the plant pathogenElsinoё pyri, strain 2203C, was found to produce four novel compounds (1-4), which were named elsinopirins A-D, in addition to the known metabolite elsinochrome A (5). After isolation by preparative high-performance liquid chromatography (HPLC), their structures, including relative stereochemistry, were elucidated by 1D and 2D nuclear magnetic resonance (NMR) and mass spectrometry (MS) data. Finally, absolute stereochemistry was assigned by chemical shifts of Mosher's esters (α-methoxy-α-trifluoromethylphenylacetic acid; MTPA) derivatives of elsinopirin B (2). The compounds were found to be devoid of significant antibacterial, antifungal, and cytotoxic activities.
    • Hybridorubrins A-D, novel azaphilone heterodimers from stromata of Hypoxylon fragiforme and insights into the biosynthetic machinery for azaphilone diversification.

      Becker, Kevin; Pfütze, Sebastian; Kuhnert, Eric; Cox, Russell; Stadler, Marc; Surup, Frank; HZI,Helmholtz-Zentrum für Infektionsforschung GmbH, Inhoffenstr. 7,38124 Braunschweig, Germany. (Wiley-VCH, 2020-08-04)
      The diversity of azaphilones in stromatal extracts of the fungus Hypoxylon fragiforme was investigated and linked to their biosynthetic machineries using bioinformatics. Nineteen azaphilone-type compounds were isolated and characterized by NMR spectroscopy and mass spectrometry, with their absolute stereoconfigurations assigned using Mosher ester analysis and ECD spectroscopy. Four unprecedented bisazaphilones, named hybridorubrins A-D ( 1 - 4 ), were elucidated, in addition to new fragirubrins F-G ( 5 - 6 ) and various known mitorubrin derivatives. Only the hybridorubrins, which are composed of mitorubrin and fragirubrin moieties, exhibited strong inhibition of Staphylococcus aureus biofilm formation. Analysis of the genome of H. fragiforme revealed the presence of two separate biosynthetic gene clusters (BGC) hfaza1 and hfaza2 responsible for azaphilone formation. While the hfaza1 BGC likely encodes the assembly of the backbone and addition of fatty acid moieties to yield the ( R )-configured series of fragirubrins, the hfaza2 BGC contains the necessary genes to synthesise the widely distributed ( S )-mitorubrins. This study is the first example of two distant cross-acting fungal BGC collaborating to produce two families of azaphilones and bisazaphilones derived thereof.
    • Hymenosetin, a 3-decalinoyltetramic acid antibiotic from cultures of the ash dieback pathogen, Hymenoscyphus pseudoalbidus.

      Halecker, Sandra; Surup, Frank; Kuhnert, Eric; Mohr, Kathrin I; Brock, Nelson L; Dickschat, Jeroen S; Junker, Corina; Schulz, Barbara; Stadler, Marc; Helmholtz Centre for ifection research, Innhoffenstr. 7, D38124 Braunschweig, Germany. (2014-04)
      A 3-decalinoyltetramic acid, for which the trivial name hymenosetin is proposed, was isolated from crude extracts of a virulent strain of the ash dieback pathogen, Hymenoscyphus pseudoalbidus (="Chalara fraxinea"). This compound was produced only under certain culture conditions in submerged cultures of the fungus. Its planar structure was determined by NMR spectroscopy and by mass spectrometry. The absolute stereochemistry was assigned by CD spectroscopy and HETLOC data. Hymenosetin exhibited broad spectrum antibacterial and antifungal activities (including strong inhibition of MRSA), as well as moderate cytotoxic effects. So far, the metabolite proved inactive in assays for evaluation of phytotoxicity, whereas viridiol, another secondary metabolite known from H. pseudoalbidus, was regarded as phytotoxic principle of the pathogen against its host, Fraxinus excelsior. Further studies will show whether hymenosetin constitutes a defence metabolite that is produced by the pathogenic fungus to combat other microbes and fungi in the natural environment.
    • Hypoxyvermelhotins A-C, new pigments from Hypoxylon lechatii sp. nov.

      Kuhnert, Eric; Heitkämper, Simone; Fournier, Jacques; Surup, Frank; Stadler, Marc; Dept of microbial drugs, Helmholtz-Centre for infection research, Inhoffenstr. 7, D-38124 Braunschweig, Germany. (2014-02)
      A new species of Hypoxylon was discovered, based on material collected in French Guiana and recognised on the basis of new combination of morpholological characters in comparison with type and authentic material of macroscopically similar taxa. These findings were corroborated by the rather isolated positions of its ITS-nrDNA and beta-tubulin DNA sequences in molecular phylogenies. However, the most salient feature of this fungus only became evident by a comparison of its stromatal HPLC profile, revealing several secondary metabolites that were hitherto not observed in stromata of any other member of the Xylariaceae. Part of the stromata were subsequently extracted to isolate these apparently specific components, using preparative chromatography. Five metabolites were obtained in pure state, and their chemical structures were elucidated by means of high resolution mass spectrometry and nuclear magnetic resonance spectroscopy. They turned out to be tetramic acid derivatives of the so-called vermelhotin type. Aside from vermelhotin, previously isolated from cultures of endophytic fungi, we identified three novel congeners, for which the trivial names hypoxyvermelhotins A-C were proposed. Like vermelhotin, they constitute orange-red pigments and a preliminary biological characterisation revealed them to have rather strong cytotoxic and moderate to weak antimicrobial effects. These results further illustrate the high diversity of unique secondary metabolites in stromata of the hypoxyloid Xylariaceae, a family in which biological diversity seems to parallel the chemical diversity of their bioactive principles to a great extent.
    • Minutellins A - D, azaphilones from the stromata of Annulohypoxylon minutellum (Xylariaceae).

      Kuhnert, Eric; Surup, Frank; Halecker, Sandra; Stadler, Marc; Helmholtz Centre for infection research, Inhoffenstr. 7, 38124 Braunschweig, Germany. (2017-02-16)
      During the course of our screening for new metabolites with chemotaxonomic importance from stromata of fungi from the family Xylariaceae, we characterized several interesting metabolites in the fungus Annulohypoxylon minutellum. Extraction of the fruiting bodies and purification by preparative HPLC resulted in the isolation of five metabolites. The main compound was identified as the known metabolite hinnulin A (5), while four minor compounds were found to represent previously undescribed azaphilones, named minutellins A - D (1-4). Their planar structures were elucidated using NMR and HRESIMS data; absolute stereochemistry was assigned by CD data and Mosher's method. Compounds 1, 3 and 5 showed cytotoxic effects against murine and human cells. As the production of 1-5 is restricted to a group of closely related Annulohypoxylon species, they serve well as chemotaxonomic marker.
    • New terpenoids from the fermentation broth of the edible mushroom .

      Surup, Frank; Hennicke, Florian; Sella, Nadine; Stroot, Maria; Bernecker, Steffen; Pfütze, Sebastian; Stadler, Marc; Rühl, Martin; HZI,Helmholtz-Zentrum für Infektionsforschung GmbH, Inhoffenstr. 7,38124 Braunschweig, Germany. (Beilstein Institut, 2019-01-01)
      The strophariaceous basidiomycete Cyclocybe aegerita (synonyms Agrocybe aegerita and A. cylindracea) is one of the most praised cultivated edible mushrooms and is being cultivated at large scale for food production. Furthermore, the fungus serves as a model organism to study fruiting body formation and the production of secondary metabolites during the life cycle of Basidiomycota. By studying the secondary metabolite profiles of C. aegerita, we found several terpenoids in submerged cultures. Aside from the main metabolite, bovistol (1), two new bovistol derivatives B and C (2, 3) and pasteurestin C as a new protoilludane (4) were isolated by preparative HPLC. Their structures were elucidated by mass spectrometry and NMR spectroscopy. The relative configurations of 2-4 were assigned by ROESY correlations, and 3JH,H coupling constants in the case of 4. Applying quantitative PCR for gene expression validation, we linked the production of bovistol and its derivatives to the respective biosynthesis gene clusters.
    • The planctomycete Stieleria maiorica Mal15 employs stieleriacines to alter the species composition in marine biofilms.

      Kallscheuer, Nicolai; Jeske, Olga; Sandargo, Birthe; Boedeker, Christian; Wiegand, Sandra; Bartling, Pascal; Jogler, Mareike; Rohde, Manfred; Petersen, Jörn; Medema, Marnix H; et al. (Nature publishing group(NPG), 2020-06-12)
      Bacterial strains of the phylum Planctomycetes occur ubiquitously, but are often found on surfaces of aquatic phototrophs, e.g. alga. Despite slower growth, planctomycetes are not outcompeted by faster-growing bacteria in biofilms on such surfaces; however, strategies allowing them to compensate for slower growth have not yet been investigated. Here, we identified stieleriacines, a class of N-acylated tyrosines produced by the novel planctomycete Stieleria maiorica Mal15T, and analysed their effects on growth of the producing strain and bacterial species likely co-occurring with strain Mal15T. Stieleriacines reduced the lag phase of Mal15T and either stimulated or inhibited biofilm formation of two bacterial competitors, indicating that Mal15T employs stieleriacines to specifically alter microbial biofilm composition. The genetic organisation of the putative stieleriacine biosynthetic cluster in strain Mal15T points towards a functional link of stieleriacine biosynthesis to exopolysaccharide-associated protein sorting and biofilm formation.