• Resolution of the Complex (Hypoxylaceae, Xylariales) and Discovery and Biological Characterization of Two of Its Prominent Secondary Metabolites.

      Lambert, Christopher; Pourmoghaddam, Mohammad Javad; Cedeño-Sanchez, Marjorie; Surup, Frank; Khodaparast, Seyed Akbar; Krisai-Greilhuber, Irmgard; Voglmayr, Hermann; Stradal, Theresia E B; Stadler, Marc; HZI,Helmholtz-Zentrum für Infektionsforschung GmbH, Inhoffenstr. 7,38124 Braunschweig, Germany. (MDPI, 2021-02-11)
      Hypoxylon, a large, cosmopolitan genus of Ascomycota is in the focus of our current poly-thetic taxonomic studies, and served as an excellent source for bioactive secondary metabolites at the same time. The present work concerns a survey of the Hypoxylon fuscum species complex based on specimens from Iran and Europe by morphological studies and high performance liquid chromatography coupled to mass spectrometry and diode array detection (HPLC-MS-DAD). Apart from known chemotaxonomic markers like binaphthalene tetrol (BNT) and daldinin F, two unprece-dented molecules were detected and subsequently isolated to purity by semi preparative HPLC. Their structures were established by nuclear-magnetic resonance (NMR) spectroscopy as 3'-malonyl-daldinin F (6) and pseudofuscochalasin A (4). The new daldinin derivative 6 showed weak cytotoxicity towards mammalian cells but bactericidal activity. The new cytochalasin 4 was compared to cytochalasin C in an actin disruption assay using fluorescence microscopy of human osteo-sarcoma U2OS cells, revealing comparable activity towards F-actin but being irreversible compared to cytochalasin C. Concurrently, a multilocus molecular phylogeny based on ribosomal and proteinogenic nucleotide sequences of Hypoxylon species resulted in a well-supported clade for H. fuscum and its allies. From a comparison of morphological, chemotaxonomic and phylogenetic evidence, we introduce the new species H. eurasiaticum and H. pseudofuscum.
    • A new genus Allodiatrype, five new species and a new host record of diatrypaceous fungi from palms (Arecaceae)

      Konta, S; et al.; HZI,Helmholtz-Zentrum für Infektionsforschung GmbH, Inhoffenstr. 7,38124 Braunschweig, Germany. (Mushroom Research Foundation, 2020-01-28)
      Diatrypaceous fungi on palms (Arecaceae) in Thailand were collected and identified based on morphological characteristics as well as combined DNA sequence analyses (ITS and TUB2). One new genus Allodiatrype, and five new species, Allocryptovalsa elaeidis, Allodiatrype arengae, A. elaeidicola, A. elaeidis and Diatrypella elaeidis are introduced. A checklist of Diatrypaceae occurring on palms (Arecaceae) and Thai diatrypaceous fungi is also provided.
    • Natural products in drug discovery: advances and opportunities.

      Atanasov, Atanas G; Zotchev, Sergey B; Dirsch, Verena M; Supuran, Claudiu T; HZI,Helmholtz-Zentrum für Infektionsforschung GmbH, Inhoffenstr. 7,38124 Braunschweig, Germany.; HIPS, Helmholtz-Institut für Pharmazeutische Forschung Saarland, Universitätscampus E8.1 66123 Saarbrücken, Germany. (Springer Nature, 2021-01-28)
      Natural products and their structural analogues have historically made a major contribution to pharmacotherapy, especially for cancer and infectious diseases. Nevertheless, natural products also present challenges for drug discovery, such as technical barriers to screening, isolation, characterization and optimization, which contributed to a decline in their pursuit by the pharmaceutical industry from the 1990s onwards. In recent years, several technological and scientific developments - including improved analytical tools, genome mining and engineering strategies, and microbial culturing advances - are addressing such challenges and opening up new opportunities. Consequently, interest in natural products as drug leads is being revitalized, particularly for tackling antimicrobial resistance. Here, we summarize recent technological developments that are enabling natural product-based drug discovery, highlight selected applications and discuss key opportunities.
    • Refined families of Sordariomycetes

      Hyde, KD; HZI,Helmholtz-Zentrum für Infektionsforschung GmbH, Inhoffenstr. 7,38124 Braunschweig, Germany. (Mushroom Research Foundation, 2020-03-31)
      This is a continuation of the papers “Towards a classification of Sordariomycetes” (2015) and “Families of Sordariomycetes” (2016) in which we compile a treatment of the class Sordariomycetes. The present treatment is needed as our knowledge has rapidly increased, from 32 orders, 105 families and 1331 genera in 2016, to 45 orders, 167 families and 1499 genera (with 308 genera incertae sedis) at the time of publication. In this treatment we provide notes on each order, families and short notes on each genus. We provide up-to-date DNA based phylogenies for 45 orders and 163 families. Three new genera and 16 new species are introduced with illustrations and descriptions, while 23 new records and three new species combinations are provided. We also list 308 taxa in Sordariomycetes genera incertae sedis. For each family we provide general descriptions and illustrate the type genus or another genus, the latter where the placement has generally been confirmed with molecular data. Both the sexual and asexual morphs representative of a family are illustrated where available. Notes on ecological and economic considerations are also given.
    • Three new species of Hypoxylon and new records of Xylariales from Panama

      Cedeño–Sanchez, M; HZI,Helmholtz-Zentrum für Infektionsforschung GmbH, Inhoffenstr. 7,38124 Braunschweig, Germany. (Mushroom Research Foundation, 2020-03-31)
      This is a continuation of the papers “Towards a classification of Sordariomycetes” (2015) and “Families of Sordariomycetes” (2016) in which we compile a treatment of the class Sordariomycetes. The present treatment is needed as our knowledge has rapidly increased, from 32 orders, 105 families and 1331 genera in 2016, to 45 orders, 167 families and 1499 genera (with 308 genera incertae sedis) at the time of publication. In this treatment we provide notes on each order, families and short notes on each genus. We provide up-to-date DNA based phylogenies for 45 orders and 163 families. Three new genera and 16 new species are introduced with illustrations and descriptions, while 23 new records and three new species combinations are provided. We also list 308 taxa in Sordariomycetes genera incertae sedis. For each family we provide general descriptions and illustrate the type genus or another genus, the latter where the placement has generally been confirmed with molecular data. Both the sexual and asexual morphs representative of a family are illustrated where available. Notes on ecological and economic considerations are also given
    • One stop shop IV: taxonomic update with molecular phylogeny for important phytopathogenic genera: 76–100 (2020)

      Jayawardena, Ruvishika S.; Hyde, Kevin D.; Chen, Yi Jyun; Papp, Viktor; Palla, Balázs; Papp, Dávid; Bhunjun, Chitrabhanu S.; Hurdeal, Vedprakash G.; Senwanna, Chanokned; Manawasinghe, Ishara S.; et al. (Springer Science and Business Media LLC, 2020-09-24)
      This is a continuation of a series focused on providing a stable platform for the taxonomy of phytopathogenic fungi and fungus-like organisms. This paper focuses on one family: Erysiphaceae and 24 phytopathogenic genera: Armillaria, Barriopsis, Cercospora, Cladosporium, Clinoconidium, Colletotrichum, Cylindrocladiella, Dothidotthia,, Fomitopsis, Ganoderma, Golovinomyces, Heterobasidium, Meliola, Mucor, Neoerysiphe, Nothophoma, Phellinus, Phytophthora, Pseudoseptoria, Pythium, Rhizopus, Stemphylium, Thyrostroma and Wojnowiciella. Each genus is provided with a taxonomic background, distribution, hosts, disease symptoms, and updated backbone trees. Species confirmed with pathogenicity studies are denoted when data are available. Six of the genera are updated from previous entries as many new species have been described.
    • Fungi on wild seeds and fruits

      Perera, R. H.; Hyde, K. D.; Maharachchikumbura, S. S.N.; Jones, E. B.G.; McKenzie, E. H.C.; Stadler, M.; Lee, H. B.; Samarakoon, M. C.; Ekanayaka, A. H.; Camporesi, E.; et al. (Mycosphere Press, 2020-09-17)
      This paper reviews and determines the fungi growing on seeds and fruits of wild plants in various habitats. Such fungi colonise a wide range of substrates with most reported from cones, cupules, and leguminous pods that are high in cellulose and lignin content. There are 1348 fungal species (belonging to 230 families and 609 genera) reported from wild seeds and fruits in 84 countries, listed in this paper. Of these, 300 fungi were described from wild seeds and fruit substrates. Members of the Fabaceae support the highest number of taxa, namely 19% of the novel wild fruit fungi. Twenty-eight genera, including 5 fossil fungal genera have been described from wild seeds and fruits: Agarwalomyces, Amorocoelophoma, Anisogenispora, Archephoma, Centrolepidosporium, Cylindroaseptospora, Cylindromyces, Davidhawksworthia, Delonicicola, Discotubeufia, Glaxoa, Kionocephala, Leucaenicola, Naranus, Neolindgomyces, Pleohelicoon, Quercicola, Remotididymella, Repetoblastiella, Restilago, Soloacrosporiella, Strobiloscypha and Tainosphaeria. Archephoma, Meniscoideisporites, Palaeodiplodites, Palaeopericonia and Xylohyphites are the new fossil fungal genera. Fungal asexual morphs predominate on wild seeds and fruits rather than the sexual morphs. The dominant fungal genera on wild seeds and fruits include Alternaria, Aspergillus, Candida, Chaetomium, Cladosporium, Colletotrichum, Curvularia, Diaporthe, Drechslera, Fusarium, Mucor, Penicillium, Pestalotiopsis, Restiosporium, Rhizopus, Talaromyces, Trichoderma and Xylaria. Certain assemblages of fungi have specific and distinct relationships with their hosts, especially Xylaria species (e.g., Xylaria magnoliae on Magnolia fruits; X. xanthinovelutina (= X. ianthino-velutina) on Fabaceae pods; X. carpophila on Fagus cupules; X. persicaria on liquidambar fruits). Whether these species occur as endophytes and become saprobes following fruit fall requires further investigation. In this study, we also made several sexual morph collections of sordariomycetous taxa from different seed and fruit substrates mainly from Thailand, with a few from the UK. These include 15 new species, 13 new host records and 1 new geographical record. The new species are described and illustrated. © 2020, Guizhou Key Laboratory of Agricultural Biotechnology
    • Taxonomy, Diversity and Cultivation of the Oudemansielloid/Xeruloid Taxa Hymenopellis, Mucidula, Oudemansiella, and Xerula and with Respect to Their Bioactivities: A Review.

      Niego, Allen Grace; Raspé, Olivier; Thongklang, Naritsada; Charoensup, Rawiwan; Lumyong, Saisamorn; Stadler, Marc; Hyde, Kevin D; HZI,Helmholtz-Zentrum für Infektionsforschung GmbH, Inhoffenstr. 7,38124 Braunschweig, Germany. (MDPI, 2021-01-13)
      The oudemansielloid/xeruloid taxa Hymenopellis, Mucidula, Oudemansiella, and Xerula are genera of Basidiomycota that constitute an important resource of bioactive compounds. Numerous studies have shown antimicrobial, anti-oxidative, anti-cancer, anti-inflammatory and other bioactivities of their extracts. The bioactive principles can be divided into two major groups: (a) hydrophilic polysaccharides with relatively high molecular weights and (b) low molecular medium polar secondary metabolites, such as the antifungal strobilurins. In this review, we summarize the state of the art on biodiversity, cultivation of the fungi and bioactivities of their secondary metabolites and discuss future applications. Although the strobilurins are well-documented, with commercial applications as agrochemical fungicides, there are also other known compounds from this group that have not yet been well-studied. Polysaccharides, dihydro-citrinone phenol A acid, scalusamides, and acetylenic lactones such as xerulin, also have potential applications in the nutraceutical, pharmaceutical and medicinal market and should be further explored. Further studies are recommended to isolate high quality bioactive compounds and fully understand their modes of action. Given that only few species of oudemansielloid/xeruloid mushrooms have been explored for their production of secondary metabolites, these taxa represent unexplored sources of potentially useful and novel bioactive metabolites.
    • Corallopyronin A for short-course anti-wolbachial, macrofilaricidal treatment of filarial infections.

      Schiefer, Andrea; Hübner, Marc P; Krome, Anna; Lämmer, Christine; Ehrens, Alexandra; Aden, Tilman; Koschel, Marianne; Neufeld, Helene; Chaverra-Muñoz, Lillibeth; Jansen, Rolf; et al. (PLOS, 2020-12-07)
      Current efforts to eliminate the neglected tropical diseases onchocerciasis and lymphatic filariasis, caused by the filarial nematodes Onchocerca volvulus and Wuchereria bancrofti or Brugia spp., respectively, are hampered by lack of a short-course macrofilaricidal-adult-worm killing-treatment. Anti-wolbachial antibiotics, e.g. doxycycline, target the essential Wolbachia endosymbionts of filariae and are a safe prototype adult-worm-sterilizing and macrofilaricidal regimen, in contrast to standard treatments with ivermectin or diethylcarbamazine, which mainly target the microfilariae. However, treatment regimens of 4-5 weeks necessary for doxycycline and contraindications limit its use. Therefore, we tested the preclinical anti-Wolbachia drug candidate Corallopyronin A (CorA) for in vivo efficacy during initial and chronic filarial infections in the Litomosoides sigmodontis rodent model. CorA treatment for 14 days beginning immediately after infection cleared >90% of Wolbachia endosymbionts from filariae and prevented development into adult worms. CorA treatment of patently infected microfilaremic gerbils for 14 days with 30 mg/kg twice a day (BID) achieved a sustained reduction of >99% of Wolbachia endosymbionts from adult filariae and microfilariae, followed by complete inhibition of filarial embryogenesis resulting in clearance of microfilariae. Combined treatment of CorA and albendazole, a drug currently co-administered during mass drug administrations and previously shown to enhance efficacy of anti-Wolbachia drugs, achieved microfilarial clearance after 7 days of treatment at a lower BID dose of 10 mg/kg CorA, a Human Equivalent Dose of 1.4 mg/kg. Importantly, this combination led to a significant reduction in the adult worm burden, which has not yet been published with other anti-Wolbachia candidates tested in this model. In summary, CorA is a preclinical candidate for filariasis, which significantly reduces treatment times required to achieve sustained Wolbachia depletion, clearance of microfilariae, and inhibition of embryogenesis. In combination with albendazole, CorA is robustly macrofilaricidal after 7 days of treatment and fulfills the Target Product Profile for a macrofilaricidal drug.
    • Solubility and Stability Enhanced Oral Formulations for the Anti-Infective Corallopyronin A.

      Krome, Anna K; Becker, Tim; Kehraus, Stefan; Schiefer, Andrea; Steinebach, Christian; Aden, Tilman; Frohberger, Stefan J; López Mármol, Álvaro; Kapote, Dnyaneshwar; Jansen, Rolf; et al. (MDPI, 2020-11-18)
      Novel-antibiotics are urgently needed to combat an increase in morbidity and mortality due to resistant bacteria. The preclinical candidate corallopyronin A (CorA) is a potent antibiotic against Gram-positive and some Gram-negative pathogens for which a solid oral formulation was needed for further preclinical testing of the active pharmaceutical ingredient (API). The neat API CorA is poorly water-soluble and instable at room temperature, both crucial characteristics to be addressed and overcome for use as an oral antibiotic. Therefore, amorphous solid dispersion (ASD) was chosen as formulation principle. The formulations were prepared by spray-drying, comprising the water-soluble polymers povidone and copovidone. Stability (high-performance liquid chromatography, Fourier-transform-infrared spectroscopy, differential scanning calorimetry), dissolution (biphasic dissolution), and solubility (biphasic dissolution, Pion's T3 apparatus) properties were analyzed. Pharmacokinetic evaluations after intravenous and oral administration were conducted in BALB/c mice. The results demonstrated that the ASD formulation principle is a suitable stability- and solubility-enhancing oral formulation strategy for the API CorA to be used in preclinical and clinical trials and as a potential market product.
    • Isolation of a gene cluster from Armillaria gallica for the synthesis of armillyl orsellinate-type sesquiterpenoids.

      Engels, Benedikt; Heinig, Uwe; McElroy, Christopher; Meusinger, Reinhard; Grothe, Torsten; Stadler, Marc; Jennewein, Stefan; HZI,Helmholtz-Zentrum für Infektionsforschung GmbH, Inhoffenstr. 7,38124 Braunschweig, Germany. (Springer, 2020-11-16)
      Melleolides and armillyl orsellinates are protoilludene-type aryl esters that are synthesized exclusively by parasitic fungi of the globally distributed genus Armillaria (Agaricomycetes, Physalacriaceae). Several of these compounds show potent antimicrobial and cytotoxic activities, making them promising leads for the development of new antibiotics or drugs for the treatment of cancer. We recently cloned and characterized the Armillaria gallica gene Pro1 encoding protoilludene synthase, a sesquiterpene cyclase catalyzing the pathway-committing step to all protoilludene-type aryl esters. Fungal enzymes representing secondary metabolic pathways are sometimes encoded by gene clusters, so we hypothesized that the missing steps in the pathway to melleolides and armillyl orsellinates might be identified by cloning the genes surrounding Pro1. Here we report the isolation of an A. gallica gene cluster encoding protoilludene synthase and four cytochrome P450 monooxygenases. Heterologous expression and functional analysis resulted in the identification of protoilludene-8α-hydroxylase, which catalyzes the first committed step in the armillyl orsellinate pathway. This confirms that ∆-6-protoilludene is a precursor for the synthesis of both melleolides and armillyl orsellinates, but the two pathways already branch at the level of the first oxygenation step. Our results provide insight into the synthesis of these valuable natural products and pave the way for their production by metabolic engineering. KEY POINTS: • Protoilludene-type aryl esters are bioactive metabolites produced by Armillaria spp. • The pathway-committing step to these compounds is catalyzed by protoilludene synthase. • We characterized CYP-type enzymes in the cluster and identified novel intermediates.
    • Simplicilones A and B Isolated from the Endophytic Fungus SPC3.

      Anoumedem, Elodie Gisèle M; Mountessou, Bel Youssouf G; Kouam, Simeon F; Narmani, Abolfazl; Surup, Frank; HZI,Helmholtz-Zentrum für Infektionsforschung GmbH, Inhoffenstr. 7,38124 Braunschweig, Germany. (MDPI, 2020-10-29)
      Two new tetracyclic polyketides with a spirocenter, simplicilones A (1) and B (2) were isolated from the broth-culture of the endophytic fungus Simplicilliumsubtropicum (SPC3) in the course of our screening for new bioactive secondary metabolites. This endophytoic fungus is naturally harboured in the fresh bark of the Cameroonian medicinal plant Duguetia staudtii (Engl. and Diels) Chatrou. The planar structures of the simplicilones were elucidated by MS and 1D as well as 2D NMR spectroscopic techniques. The relative configuration was assigned by NOESY experiments in conjunction with coupling constants; subsequently, the absolute configurations were assigned by the modified Mosher's method. The compounds showed weak cytotoxic effects against the cell line KB3.1 (in vitro cytotoxicity (IC50) = 25 µg/mL for 1, 29 µg/mL for 2), but were inactive against the tested Gram-positive and Gram-negative bacteria as well as fungi.
    • Unambiguous identification of fungi: where do we stand and how accurate and precise is fungal DNA barcoding?

      Lücking, Robert; Aime, M Catherine; Robbertse, Barbara; Miller, Andrew N; Ariyawansa, Hiran A; Aoki, Takayuki; Cardinali, Gianluigi; Crous, Pedro W; Druzhinina, Irina S; Geiser, David M; et al. (BMC, 2020-07-10)
      True fungi (Fungi) and fungus-like organisms (e.g. Mycetozoa, Oomycota) constitute the second largest group of organisms based on global richness estimates, with around 3 million predicted species. Compared to plants and animals, fungi have simple body plans with often morphologically and ecologically obscure structures. This poses challenges for accurate and precise identifications. Here we provide a conceptual framework for the identification of fungi, encouraging the approach of integrative (polyphasic) taxonomy for species delimitation, i.e. the combination of genealogy (phylogeny), phenotype (including autecology), and reproductive biology (when feasible). This allows objective evaluation of diagnostic characters, either phenotypic or molecular or both. Verification of identifications is crucial but often neglected. Because of clade-specific evolutionary histories, there is currently no single tool for the identification of fungi, although DNA barcoding using the internal transcribed spacer (ITS) remains a first diagnosis, particularly in metabarcoding studies. Secondary DNA barcodes are increasingly implemented for groups where ITS does not provide sufficient precision. Issues of pairwise sequence similarity-based identifications and OTU clustering are discussed, and multiple sequence alignment-based phylogenetic approaches with subsequent verification are recommended as more accurate alternatives. In metabarcoding approaches, the trade-off between speed and accuracy and precision of molecular identifications must be carefully considered. Intragenomic variation of the ITS and other barcoding markers should be properly documented, as phylotype diversity is not necessarily a proxy of species richness. Important strategies to improve molecular identification of fungi are: (1) broadly document intraspecific and intragenomic variation of barcoding markers; (2) substantially expand sequence repositories, focusing on undersampled clades and missing taxa; (3) improve curation of sequence labels in primary repositories and substantially increase the number of sequences based on verified material; (4) link sequence data to digital information of voucher specimens including imagery. In parallel, technological improvements to genome sequencing offer promising alternatives to DNA barcoding in the future. Despite the prevalence of DNA-based fungal taxonomy, phenotype-based approaches remain an important strategy to catalog the global diversity of fungi and establish initial species hypotheses.
    • Unsaturated Fatty Acids Control Biofilm Formation of and Other Gram-Positive Bacteria.

      Yuyama, Kamila Tomoko; Rohde, Manfred; Molinari, Gabriella; Stadler, Marc; Abraham, Wolf-Rainer; HZI,Helmholtz-Zentrum für Infektionsforschung GmbH, Inhoffenstr. 7,38124 Braunschweig, Germany. (MDPI, 2020-11-08)
      Infections involving biofilms are difficult to treat due to increased resistances against antibiotics and the immune system. Hence, there is an urgent demand for novel drugs against biofilm infections. During our search for novel biofilm inhibitors from fungi, we isolated linoleic acid from the ascomycete Hypoxylon fragiforme which showed biofilm inhibition of several bacteria at sub-MIC concentrations. Many fatty acids possess antimicrobial activities, but their minimum inhibitory concentrations (MIC) are high and reports on biofilm interferences are scarce. We demonstrated that not only linoleic acid but several unsaturated long-chain fatty acids inhibited biofilms at sub-MIC concentrations. The antibiofilm activity exerted by long-chain fatty acids was mainly against Gram-positive bacteria, especially against Staphylococcus aureus. Micrographs of treated S. aureus biofilms revealed a reduction in the extracellular polymeric substances, pointing to a possible mode of action of fatty acids on S. aureus biofilms. The fatty acids had a strong species specificity. Poly-unsaturated fatty acids had higher activities than saturated ones, but no obvious rule could be found for the optimal length and desaturation for maximal activity. As free fatty acids are non-toxic and ubiquitous in food, they may offer a novel tool, especially in combination with antibiotics, for the control of biofilm infections.
    • Stieleriacines, N-Acyl Dehydrotyrosines From the Marine Planctomycete Stieleria neptunia sp. nov.

      Sandargo, Birthe; Jeske, Olga; Boedeker, Christian; Wiegand, Sandra; Wennrich, Jan-Peer; Kallscheuer, Nicolai; Jogler, Mareike; Rohde, Manfred; Jogler, Christian; Surup, Frank; et al. (Frontiers, 2020-07-16)
      Bacteria of the phylum Planctomycetes occur ubiquitously in marine environments and play important roles in the marine nitrogen- and carbon cycle, for example as scavengers after phototrophic blooms. Here, we describe the isolation and characterization of the planctomycetal strain Enr13T isolated from a Posidonia sp. biofilm obtained from seawater sediment close to Panarea Island, Italy. Phylogenetic tree reconstruction based on 16S rRNA gene sequences and multi-locus sequence analysis supports the delineation of strain Enr13T from characterized species part of the phylum of Planctomycetes. HPLC-MS analysis of culture broth obtained from strain Enr13T revealed the presence of lipophilic metabolites, of which the major compound was isolated by preparative reversed-phase HPLC. The structure of this compound, named stieleriacine D (1), was elucidated utilizing HRESIMS, 1D- and 2D-NMR data as a new N-acylated dehydrotyrosine derivative. Its biosynthesis was proposed based on an in silico gene cluster analysis. Through analysis of the MS/MS spectrum of 1 and its minor derivative, stieleriacine E (2), it was possible to assign the structure of 2 without isolation. 1 showed antibacterial activity, however, the wide distribution of structurally related compounds indicates a potential role as a signaling molecule.
    • Multisystem combined uranium resistance mechanisms and bioremediation potential of Stenotrophomonas bentonitica BII-R7: Transcriptomics and microscopic study

      Pinel-Cabello, M.; Jroundi, F.; López-Fernández, M.; Geffers, R.; Jarek, M.; Jauregui, R.; Link, A.; Vílchez-Vargas, R.; Merroun, M. L.; HZI,Helmholtz-Zentrum für Infektionsforschung GmbH, Inhoffenstr. 7,38124 Braunschweig, Germany. (Elsevier, 2021-02-05)
      The potential use of microorganisms in the bioremediation of U pollution has been extensively described. However, a lack of knowledge on molecular resistance mechanisms has become a challenge for the use of these technologies. We reported on the transcriptomic and microscopic response of Stenotrophomonas bentonitica BII-R7 exposed to 100 and 250 μM of U. Results showed that exposure to 100 μM displayed up-regulation of 185 and 148 genes during the lag and exponential phases, respectively, whereas 143 and 194 were down-regulated, out of 3786 genes (>1.5-fold change). Exposure to 250 μM of U showed up-regulation of 68 genes and down-regulation of 290 during the lag phase. Genes involved in cell wall and membrane protein synthesis, efflux systems and phosphatases were up-regulated under all conditions tested. Microscopic observations evidenced the formation of U-phosphate minerals at membrane and extracellular levels. Thus, a biphasic process is likely to occur: the increased cell wall would promote the biosorption of U to the cell surface and its precipitation as U-phosphate minerals enhanced by phosphatases. Transport systems would prevent U accumulation in the cytoplasm. These findings contribute to an understanding of how microbes cope with U toxicity, thus allowing for the development of efficient bioremediation strategies.
    • Hybridorubrins A-D, novel azaphilone heterodimers from stromata of Hypoxylon fragiforme and insights into the biosynthetic machinery for azaphilone diversification.

      Becker, Kevin; Pfütze, Sebastian; Kuhnert, Eric; Cox, Russell; Stadler, Marc; Surup, Frank; HZI,Helmholtz-Zentrum für Infektionsforschung GmbH, Inhoffenstr. 7,38124 Braunschweig, Germany. (Wiley-VCH, 2020-08-04)
      The diversity of azaphilones in stromatal extracts of the fungus Hypoxylon fragiforme was investigated and linked to their biosynthetic machineries using bioinformatics. Nineteen azaphilone-type compounds were isolated and characterized by NMR spectroscopy and mass spectrometry, with their absolute stereoconfigurations assigned using Mosher ester analysis and ECD spectroscopy. Four unprecedented bisazaphilones, named hybridorubrins A-D ( 1 - 4 ), were elucidated, in addition to new fragirubrins F-G ( 5 - 6 ) and various known mitorubrin derivatives. Only the hybridorubrins, which are composed of mitorubrin and fragirubrin moieties, exhibited strong inhibition of Staphylococcus aureus biofilm formation. Analysis of the genome of H. fragiforme revealed the presence of two separate biosynthetic gene clusters (BGC) hfaza1 and hfaza2 responsible for azaphilone formation. While the hfaza1 BGC likely encodes the assembly of the backbone and addition of fatty acid moieties to yield the ( R )-configured series of fragirubrins, the hfaza2 BGC contains the necessary genes to synthesise the widely distributed ( S )-mitorubrins. This study is the first example of two distant cross-acting fungal BGC collaborating to produce two families of azaphilones and bisazaphilones derived thereof.
    • Three novel species and a new record of Daldinia (Hypoxylaceae) from Thailand

      Wongkanoun, Sarunyou; Becker, Kevin; Boonmee, Kanthawut; Srikitikulchai, Prasert; Boonyuen, Nattawut; Chainuwong, Boonchuai; Luangsa-ard, Jennifer; Stadler, Marc; HZI,Helmholtz-Zentrum für Infektionsforschung GmbH, Inhoffenstr. 7,38124 Braunschweig, Germany. (Springer Science and Business Media LLC, 2020-10-08)
      n an investigation of stromatic Xylariales in Thailand, several specimens of Daldinia were discovered. Three novel species (D. flavogranulata, D. phadaengensis, and D. chiangdaoensis) were recognized from a molecular phylogeny based on concatenated ITS, LSU, RPB2, and TUB2 sequence data, combined with morphological characters and secondary metabolite profiles based on high performance liquid chromatography coupled to diode array detection and mass spectrometry (HPLC-MS). The major components detected were cytochalasins (in D. flavogranulata and D. chiangdaoensis) and daldinin type azaphilones (in D. phadaengensis). In addition, D. brachysperma, which had hitherto only been reported from America, was found for the first time in Asia. Its phylogenetic affinities were studied, confirming previous suspicions from morphological comparisons that the species is closely related to D. eschscholtzii and D. bambusicola, both common in Thailand. Daldinia flavogranulata, one of the new taxa, was found to be closely related to the same taxa. The other two novel species, D. phadaengensis and D. chiangdaoensis, share characters with D. korfii and D. kretzschmarioides, respectively.
    • Erinacine C Activates Transcription from a Consensus ETS DNA Binding Site in Astrocytic Cells in Addition to NGF Induction.

      Rascher, Monique; Wittstein, Kathrin; Winter, Barbara; Rupcic, Zeljka; Wolf-Asseburg, Alexandra; Stadler, Marc; Köster, Reinhard W; HZI,Helmholtz-Zentrum für Infektionsforschung GmbH, Inhoffenstr. 7,38124 Braunschweig, Germany. (MDPI, 2020-10-14)
      Medicinal mushrooms of the genus Hericium are known to produce secondary metabolites with homeostatic properties for the central nervous system. We and others have recently demonstrated that among these metabolites cyathane diterpenoids and in particular erinacine C possess potent neurotrophin inducing properties in astrocytic cells. Yet, the signaling events downstream of erinacine C induced neurotrophin acitivity in neural-like adrenal phaeochromocytoma cells (PC12) cells have remained elusive. Similar, signaling events activated by erinacine C in astrocytic cells are unknown. Using a combination of genetic and pharmacological inhibitors we show that erinacine C induced neurotrophic activity mediates PC12 cell differentiation via the TrkA receptor and likely its associated PLCγ-, PI3K-, and MAPK/ERK pathways. Furthermore, a small library of transcriptional activation reporters revealed that erinacine C induces transcriptional activation mediated by DNA consensus binding sites of selected conserved transcription factor families. Among these, transcription is activated from an ETS consensus in a concentration dependent manner. Interestingly, induced ETS-consensus transcription occurs in parallel and independent of neurotrophin induction. This finding helps to explain the many pleiotropic functions of cyathane diterpenoids. Moreover, our studies provide genetic access to cyathane diterpenoid functions in astrocytic cells and help to mechanistically understand the action of cyathanes in glial cells.
    • Recent progress in biodiversity research on the Xylariales and their secondary metabolism.

      Becker, Kevin; Stadler, Marc; HZI,Helmholtz-Zentrum für Infektionsforschung GmbH, Inhoffenstr. 7,38124 Braunschweig, Germany. (Springer Nature, 2020-10-23)
      The families Xylariaceae and Hypoxylaceae (Xylariales, Ascomycota) represent one of the most prolific lineages of secondary metabolite producers. Like many other fungal taxa, they exhibit their highest diversity in the tropics. The stromata as well as the mycelial cultures of these fungi (the latter of which are frequently being isolated as endophytes of seed plants) have given rise to the discovery of many unprecedented secondary metabolites. Some of those served as lead compounds for development of pharmaceuticals and agrochemicals. Recently, the endophytic Xylariales have also come in the focus of biological control, since some of their species show strong antagonistic effects against fungal and other pathogens. New compounds, including volatiles as well as nonvolatiles, are steadily being discovered from these ascomycetes, and polythetic taxonomy now allows for elucidation of the life cycle of the endophytes for the first time. Moreover, recently high-quality genome sequences of some strains have become available, which facilitates phylogenomic studies as well as the elucidation of the biosynthetic gene clusters (BGC) as a starting point for synthetic biotechnology approaches. In this review, we summarize recent findings, focusing on the publications of the past 3 years.