• Discovery of novel biologically active secondary metabolites from Thai mycodiversity with anti-infective potential

      Kuephadungphan, Wilawan; Macabeo, Allan Patrick G.; Luangsa-Ard, Janet Jennifer; Stadler, Marc; HZI,Helmholtz-Zentrum für Infektionsforschung GmbH, Inhoffenstr. 7,38124 Braunschweig, Germany. (Elsevier, 2021-01-01)
      This mini-review is dedicated to the summary of results of the EU-funded Project “Golden Mycological Triangle” (acronym GoMyTri), which was carried out in collaboration of three research infrastructures in Germany, the Netherlands and Thailand during the years 2014–2018. The cooperation explored the mycological and microbiological biodiversity of Europe and Southeast Asia with regard to the search for the badly needed new antibiotics and other biologically active secondary metabolites. The project was conducted to foster international collaboration networks, know-how exchange and interdisciplinary training of young scientists. The first two years of the project were mainly dedicated to field work, and several hundreds of fungal cultures have been isolated from material mostly collected in Thailand. These fungal strains were characterized by morphological and molecular phylogenetic methods and several new taxa were discovered. The cultures underwent screening for antimicrobial and nematicidal metabolites and a number of bioactive metabolites have already been found, isolated and characterized. Several large phylogenetic studies have already been published that resulted from the project work. The results were also brought to the attention of the scientific community as well as the general public through various dissemination events. Based on the tremendous success of this project, a follow-up project application including additional partners from Africa and further European countries has recently been filed and approved, and the international, interdisciplinary collaboration will now continue in the new RISE-MSCA-Project (acronym “Mycobiomics”).
    • Analogs of the carotane antibiotic fulvoferruginin from submerged cultures of a Thai sp.

      Sandargo, Birthe; Kaysan, Leon; Teponno, Rémy B; Richter, Christian; Thongbai, Benjarong; Surup, Frank; Stadler, Marc; HZI,Helmholtz-Zentrum für Infektionsforschung GmbH, Inhoffenstr. 7,38124 Braunschweig, Germany. (Beilstein Institut, 2021-06-04)
      A recent find of a Marasmius species in Northern Thailand led to the isolation of five unprecedented derivatives of the carotane antibiotic fulvoferruginin (1), fulvoferruginins B-F (2-6). The structures of these sesquiterpenoids were elucidated using HRESIMS, 1D and 2D NMR, as well as CD spectroscopy. Assessing the bioactivity, fulvoferruginin emerged as a potent cytotoxic agent of potential pharmaceutical interest.
    • Synthesis of the fungal macrolide berkeleylactone A and its inhibition of microbial biofilm formation.

      Schriefer, Manuel G; Schrey, Hedda; Zeng, Haoxuan; Stadler, Marc; Schobert, Rainer; HZI,Helmholtz-Zentrum für Infektionsforschung GmbH, Inhoffenstr. 7,38124 Braunschweig, Germany. (Royal Society of Chemistry, 2021-05-03)
      The fungal macrolide berkeleylactone A was synthesised in 13 steps and 24% yield using (R)-propylene oxide and an asymmetric Noyori hydrogenation of a β-ketoester to install the stereogenic centres. A domino addition-Wittig olefination of a 13-hydroxytetradecanal intermediate with the cumulated ylide Ph3PCCO closed the macrocyle by establishing the α,β-unsaturated ester group, necessary for the attachment of the sidechain thiol via a thia-Michael reaction. The synthetic berkeleylactone A inhibited the formation of Staphylococcus aureus biofilms and showed significant dispersive effects on preformed biofilms of Candida albicans by at least 45% relative to untreated controls at concentrations as low as 1.3 μg mL-1.
    • How to publish a new fungal species, or name, version 3.0.

      Aime, M Catherine; Miller, Andrew N; Aoki, Takayuki; Bensch, Konstanze; Cai, Lei; Crous, Pedro W; Hawksworth, David L; Hyde, Kevin D; Kirk, Paul M; Lücking, Robert; et al. (BMC, 2021-05-03)
      It is now a decade since The International Commission on the Taxonomy of Fungi (ICTF) produced an overview of requirements and best practices for describing a new fungal species. In the meantime the International Code of Nomenclature for algae, fungi, and plants (ICNafp) has changed from its former name (the International Code of Botanical Nomenclature) and introduced new formal requirements for valid publication of species scientific names, including the separation of provisions specific to Fungi and organisms treated as fungi in a new Chapter F. Equally transformative have been changes in the data collection, data dissemination, and analytical tools available to mycologists. This paper provides an updated and expanded discussion of current publication requirements along with best practices for the description of new fungal species and publication of new names and for improving accessibility of their associated metadata that have developed over the last 10 years. Additionally, we provide: (1) model papers for different fungal groups and circumstances; (2) a checklist to simplify meeting (i) the requirements of the ICNafp to ensure the effective, valid and legitimate publication of names of new taxa, and (ii) minimally accepted standards for description; and, (3) templates for preparing standardized species descriptions.
    • Ophiocordyceps flavida sp. nov. (Ophiocordycipitaceae), a new species from Thailand associated with Pseudogibellula formicarum (Cordycipitaceae), and their bioactive secondary metabolites

      Mongkolsamrit, Suchada; Noisripoom, Wasana; Pumiputikul, Siraphop; Boonlarppradab, Chollaratt; Samson, Robert A.; Stadler, Marc; Becker, Kevin; Luangsa-Ard, Janet Jennifer; HZI,Helmholtz-Zentrum für Infektionsforschung GmbH, Inhoffenstr. 7,38124 Braunschweig, Germany. (Springer Nature, 2021-04-01)
      During a diversity study of entomopathogenic fungi in an agricultural ecosystem, two fungi were collected, isolated, and identified based on molecular phylogenetic analyses of three nuclear loci (LSU, TEF1, and RPB1) combined with morphological data. In this study, one novel species is described, Ophiocordyceps flavida, and a new record of Pseudogibellula formicarum for Thailand. Ophiocordyceps flavida morphologically resembles the Hirsutella anamorph of Ophiocordyceps pruinosa by having a mononematous character of the conidiophores and the same insect host (Hemiptera: Cicadellidae). Pseudogibellula formicarum is found to occur simultaneously with O. flavida, producing white conidiophores on the host. Additionally, secondary metabolites of both fungi were investigated and the major compound in O. flavida was identified as 2-[2-(4-chlorophenyl)ethyl]-2-(1,1-dimethylethyl)-oxirane. Pseudogibellula formicarum from Ghana and Thailand produces 6-methoxy-1H-indole-3-carbonitrile as a main component. These compounds are known from chemical synthesis or as products of biotransformation, respectively. However, they were obtained in our study as genuine fungal metabolites for the first time and may even constitute chemotaxonomic markers for the respective species
    • Macrooxazoles A-D, New 2,5-Disubstituted Oxazole-4-Carboxylic Acid Derivatives from the Plant Pathogenic Fungus .

      Matio Kemkuignou, Blondelle; Treiber, Laura; Zeng, Haoxuan; Schrey, Hedda; Schobert, Rainer; Stadler, Marc; HZI,Helmholtz-Zentrum für Infektionsforschung GmbH, Inhoffenstr. 7,38124 Braunschweig, Germany. (MDPI, 2020-11-24)
      In our ongoing search for new bioactive fungal metabolites, four previously undescribed oxazole carboxylic acid derivatives (1-4) for which we proposed the trivial names macrooxazoles A-D together with two known tetramic acids (5-6) were isolated from the plant pathogenic fungus Phoma macrostoma. Their structures were elucidated based on high-resolution mass spectrometry (HR-MS) and nuclear magnetic resonance (NMR) spectroscopy. The hitherto unclear structure of macrocidin Z (6) was also confirmed by its first total synthesis. The isolated compounds were evaluated for their antimicrobial activities against a panel of bacteria and fungi. Cytotoxic and anti-biofilm activities of the isolates are also reported herein. The new compound 3 exhibited weak-to-moderate antimicrobial activity as well as the known macrocidins 5 and 6. Only the mixture of compounds 2 and 4 (ratio 1:2) showed weak cytotoxic activity against the tested cancer cell lines with an IC50 of 23 µg/mL. Moreover, the new compounds 2 and 3, as well as the known compounds 5 and 6, interfered with the biofilm formation of Staphylococcus aureus, inhibiting 65%, 75%, 79%, and 76% of biofilm at 250 µg/mL, respectively. Compounds 5 and 6 also exhibited moderate activity against S. aureus preformed biofilm with the highest inhibition percentage of 75% and 73% at 250 µg/mL, respectively.
    • Diketopiperazines from Batnamyces globulariicola, gen. & sp. nov. (Chaetomiaceae), a fungus associated with roots of the medicinal plant Globularia alypum in Algeria

      Noumeur, Sara R.; Teponno, Rémy B.; Helaly, Soleiman E.; Wang, Xue Wei; Harzallah, Daoud; Houbraken, Jos; Crous, Pedro W.; Stadler, Marc; HZI,Helmholtz-Zentrum für Infektionsforschung GmbH, Inhoffenstr. 7,38124 Braunschweig, Germany. (Springer, 2020-06-01)
      Eight diketopiperazines including five previously unreported derivatives were isolated from an endophytic fungus cultured from the medicinal plant Globularia alypum collected in Algeria. The strain was characterised by means of morphological studies and molecular phylogenetic methods and was found to represent a species of a new genus in the Chaetomiaceae, for which we propose the name Batnamyces globulariicola. The taxonomic position of the new genus, which appears phylogenetically related to Stolonocarpus and Madurella, was evaluated by a multi-locus genealogy and by morphological studies in comparison to DNA sequence data reported in the recent monographs of the family. The culture remained sterile on several culture media despite repeated attempts to induce sporulation, and only some chlamydospores were formed. After fermentation in submerged culture and extraction of the cultures with organic solvents, the major secondary metabolites of B. globulariicola were isolated and their chemical structures were elucidated by extensive spectral analysis including nuclear magnetic resonance (NMR) spectroscopy, high-resolution electrospray ionisation mass spectrometry (HRESIMS), and electronic circular dichroism (ECD) measurements. The isolated compounds were tested for their biological activities against various bacteria, fungi, and two mammalian cell lines, but only three of them exhibited weak cytotoxicity against KB3.1 cells, but no antimicrobial effects were observed.
    • New developments in mycological taxonomy and nomenclature and news about the future development of Mycological Progress.

      Stadler, Marc; Weber, Evi; HZI,Helmholtz-Zentrum für Infektionsforschung GmbH, Inhoffenstr. 7,38124 Braunschweig, Germany. (Springer Nature, 2021-03-27)
      [No abstract available]
    • Multi-locus phylogeny of the genus Curvularia and description of ten new species

      Marin-Felix, Y.; Hernández-Restrepo, M.; Crous, P. W.; HZI,Helmholtz-Zentrum für Infektionsforschung GmbH, Inhoffenstr. 7,38124 Braunschweig, Germany. (Springer Nature, 2020-06-01)
      Curvularia is a cosmopolitan genus that includes species associated with plants, animals and humans, several of which are of clinical significance. Some of these species are important pathogens of grasses, causing devastating diseases on cereal crops in the family Poaceae. In the present multi-locus study, ex-type and reference strains of Curvularia, as well as several strains deposited in the CBS culture collection of the Westerdijk Fungal Biodiversity Institute, were included. Based on ITS, GAPDH and TEF1 sequences, as well as phenotypic data, ten new species are described and illustrated: C. arcana, C. austriaca, C. canadensis, C. ellisii, C. pseudoclavata, C. pseudoellisii, C. pseudointermedia, C. pseudoprotuberata, C. siddiquii and C. tribuli. Moreover, the new combinations C. cactivora and C. patereae are proposed, and an epitype for C. oryzae-sativae is designated. In addition, illustrations and descriptions are provided for C. cactivora, C. ellisii, C. crassiseptata, C. neergaardii, C. oryzae, C. oryzae-sativae, C. protuberata and C. verruciformis. The description of C. pseudobrachyspora is emended, and its host and distribution records are updated.
    • Secondary metabolites of Phlebopus species from Northern Thailand

      Chuankid, Boontiya; Schrey, Hedda; Thongbai, Benjarong; Raspé, Olivier; Arnold, Norbert; Hyde, Kevin David; Stadler, Marc; HZI,Helmholtz-Zentrum für Infektionsforschung GmbH, Inhoffenstr. 7,38124 Braunschweig, Germany. (Springer.com, 2020-12-01)
      Submerged cultures of the edible mushrooms Phlebopus portentosus and Phlebopus spongiosus were screened for their secondary metabolites by HPLC-UV/Vis and HR-LC-ESI-MS. Two new compounds, 9′-hydroxyphenyl pulvinone (1), containing an unusual pulvinone structure, and phlebopyron (2), together with the seven known pigments, atromentic acid (3), xerocomic acid (4), variegatic acid (5), methyl atromentate (6), methyl isoxerocomate (7), methyl variegatate (8), and variegatorubin (9) were isolated from the cultures. Their structures were assigned on the basis of extensive 1D/2D NMR spectroscopic analyses, as well as HR-ESI-MS, and HR-ESI-MS/MS measurements. Furthermore, the isolated compounds were evaluated for their antimicrobial and cytotoxic properties. 9′-hydroxyphenyl pulvinone (1), xerocomic acid (4), and methyl variegatate (8) exhibited weak to moderate cytotoxic activities against several tumor cell lines. The present paper provides a comprehensive characterization of pigments from the class of pulvinic acids that are present in the basidiomes of many edible bolete species.
    • Three New Derivatives of Zopfinol from Pseudorhypophila Mangenotii gen. et comb. nov

      Harms, Karen; Milic, Andrea; Stchigel, Alberto M; Stadler, Marc; Surup, Frank; Marin-Felix, Yasmina; HZI,Helmholtz-Zentrum für Infektionsforschung GmbH, Inhoffenstr. 7,38124 Braunschweig, Germany. (MDPI, 2021-03-03)
      Triangularia mangenotti was analyzed for the production of secondary metabolites, resulting in the isolation of known zopfinol (1) and its new derivatives zopfinol B-C (2-4), the 10-membered lactones 7-O-acetylmultiplolide A (5) and 8-O-acetylmultiplolide A (6), together with sordarin (7), sordarin B (8), and hypoxysordarin (9). The absolute configuration of 1 was elucidated by the synthesis of MPTA-esters. Compound 1 showed antimicrobial activity against the Gram-positive bacteria Bacillus subtilis and Staphylococcus aureus and the fungus Mucor hiemalis. While 4 was weakly antibacterial, 3 showed stronger antibiotic activity against the Gram-positive bacteria and weak antifungal activity against M. hiemalis and Rhodotorula glutinis. We furthermore observed the cytotoxicity of 1, 3 and 4 against the mammalian cell lines KB3.1 and L929. Moreover, the new genus Pseudorhypophila is introduced herein to accommodate Triangularia mangenotii together with several species of Zopfiella-Z. marina, Z. pilifera, and Z. submersa. These taxa formed a well-supported monophyletic clade in the recently introduced family Navicularisporaceae, located far from the type species of the respective original genera, in a phylogram based on the combined dataset sequences of the internal transcribed spacer region (ITS), the nuclear rDNA large subunit (LSU), and fragments of the ribosomal polymerase II subunit 2 (rpb2) and β-tubulin (tub2) genes. Zopfiella submersa is synonymized with P. marina due to the phylogenetic and morphological similarity. The isolation of zopfinols 1-4 and sordarins 7-9 confirms the potential of this fungal order as producers of bioactive compounds and suggests these compounds as potential chemotaxonomic markers.
    • Amycolatomycins A and B, Cyclic Hexapeptides Isolated from an amycolatopsis sp. 195334CR.

      Primahana, Gian; Risdian, Chandra; Mozef, Tjandrawati; Wink, Joachim; Surup, Frank; Stadler, Marc; HZI,Helmholtz-Zentrum für Infektionsforschung GmbH, Inhoffenstr. 7,38124 Braunschweig, Germany. (MDPI, 2021-03-05)
      The rare actinobacterium Amycolatopsis sp. strain 195334CR was found to produce previously undescribed cyclic hexapeptides, which we named amycolatomycin A and B (1 and 2). Their planar structures were determined by high-resolution mass spectrometry as well as extensive 1D and 2D NMR spectroscopy, while the absolute stereochemistry of its amino acids were determined by Marfey's method. Moreover, 1 and 2 differ by the incorporation of l-Ile and l-allo-Ile, respectively, whose FDVA (Nα-(2,4-Dinitro-5-fluorphenyl)-L-valinamide) derivatives were separated on a C4 column. Their hallmark in common is a unique 2,6-dichloro-tryptophan amino acid unit. Amycolatomycin A (1) exhibited weak activity against Bacillus subtilis DSM 10 (minimum inhibitory concentration (MIC) = 33.4 µg/mL).
    • Resolution of the Hypoxylon fuscum complex (hypoxylaceae, xylariales) and discovery and biological characterization of two of its prominent secondary metabolites.

      Lambert, Christopher; Pourmoghaddam, Mohammad Javad; Cedeño-Sanchez, Marjorie; Surup, Frank; Khodaparast, Seyed Akbar; Krisai-Greilhuber, Irmgard; Voglmayr, Hermann; Stradal, Theresia E B; Stadler, Marc; HZI,Helmholtz-Zentrum für Infektionsforschung GmbH, Inhoffenstr. 7,38124 Braunschweig, Germany. (MDPI, 2021-02-11)
      Hypoxylon, a large, cosmopolitan genus of Ascomycota is in the focus of our current poly-thetic taxonomic studies, and served as an excellent source for bioactive secondary metabolites at the same time. The present work concerns a survey of the Hypoxylon fuscum species complex based on specimens from Iran and Europe by morphological studies and high performance liquid chromatography coupled to mass spectrometry and diode array detection (HPLC-MS-DAD). Apart from known chemotaxonomic markers like binaphthalene tetrol (BNT) and daldinin F, two unprece-dented molecules were detected and subsequently isolated to purity by semi preparative HPLC. Their structures were established by nuclear-magnetic resonance (NMR) spectroscopy as 3'-malonyl-daldinin F (6) and pseudofuscochalasin A (4). The new daldinin derivative 6 showed weak cytotoxicity towards mammalian cells but bactericidal activity. The new cytochalasin 4 was compared to cytochalasin C in an actin disruption assay using fluorescence microscopy of human osteo-sarcoma U2OS cells, revealing comparable activity towards F-actin but being irreversible compared to cytochalasin C. Concurrently, a multilocus molecular phylogeny based on ribosomal and proteinogenic nucleotide sequences of Hypoxylon species resulted in a well-supported clade for H. fuscum and its allies. From a comparison of morphological, chemotaxonomic and phylogenetic evidence, we introduce the new species H. eurasiaticum and H. pseudofuscum.
    • A new genus Allodiatrype, five new species and a new host record of diatrypaceous fungi from palms (Arecaceae)

      Konta, S; et al.; HZI,Helmholtz-Zentrum für Infektionsforschung GmbH, Inhoffenstr. 7,38124 Braunschweig, Germany. (Mushroom Research Foundation, 2020-01-28)
      Diatrypaceous fungi on palms (Arecaceae) in Thailand were collected and identified based on morphological characteristics as well as combined DNA sequence analyses (ITS and TUB2). One new genus Allodiatrype, and five new species, Allocryptovalsa elaeidis, Allodiatrype arengae, A. elaeidicola, A. elaeidis and Diatrypella elaeidis are introduced. A checklist of Diatrypaceae occurring on palms (Arecaceae) and Thai diatrypaceous fungi is also provided.
    • Natural products in drug discovery: advances and opportunities.

      Atanasov, Atanas G; Zotchev, Sergey B; Dirsch, Verena M; Supuran, Claudiu T; HZI,Helmholtz-Zentrum für Infektionsforschung GmbH, Inhoffenstr. 7,38124 Braunschweig, Germany.; HIPS, Helmholtz-Institut für Pharmazeutische Forschung Saarland, Universitätscampus E8.1 66123 Saarbrücken, Germany. (Springer Nature, 2021-01-28)
      Natural products and their structural analogues have historically made a major contribution to pharmacotherapy, especially for cancer and infectious diseases. Nevertheless, natural products also present challenges for drug discovery, such as technical barriers to screening, isolation, characterization and optimization, which contributed to a decline in their pursuit by the pharmaceutical industry from the 1990s onwards. In recent years, several technological and scientific developments - including improved analytical tools, genome mining and engineering strategies, and microbial culturing advances - are addressing such challenges and opening up new opportunities. Consequently, interest in natural products as drug leads is being revitalized, particularly for tackling antimicrobial resistance. Here, we summarize recent technological developments that are enabling natural product-based drug discovery, highlight selected applications and discuss key opportunities.
    • Refined families of Sordariomycetes

      Hyde, KD; HZI,Helmholtz-Zentrum für Infektionsforschung GmbH, Inhoffenstr. 7,38124 Braunschweig, Germany. (Mushroom Research Foundation, 2020-03-31)
      This is a continuation of the papers “Towards a classification of Sordariomycetes” (2015) and “Families of Sordariomycetes” (2016) in which we compile a treatment of the class Sordariomycetes. The present treatment is needed as our knowledge has rapidly increased, from 32 orders, 105 families and 1331 genera in 2016, to 45 orders, 167 families and 1499 genera (with 308 genera incertae sedis) at the time of publication. In this treatment we provide notes on each order, families and short notes on each genus. We provide up-to-date DNA based phylogenies for 45 orders and 163 families. Three new genera and 16 new species are introduced with illustrations and descriptions, while 23 new records and three new species combinations are provided. We also list 308 taxa in Sordariomycetes genera incertae sedis. For each family we provide general descriptions and illustrate the type genus or another genus, the latter where the placement has generally been confirmed with molecular data. Both the sexual and asexual morphs representative of a family are illustrated where available. Notes on ecological and economic considerations are also given.
    • Three new species of Hypoxylon and new records of Xylariales from Panama

      Cedeño–Sanchez, M; HZI,Helmholtz-Zentrum für Infektionsforschung GmbH, Inhoffenstr. 7,38124 Braunschweig, Germany. (Mushroom Research Foundation, 2020-03-31)
      This is a continuation of the papers “Towards a classification of Sordariomycetes” (2015) and “Families of Sordariomycetes” (2016) in which we compile a treatment of the class Sordariomycetes. The present treatment is needed as our knowledge has rapidly increased, from 32 orders, 105 families and 1331 genera in 2016, to 45 orders, 167 families and 1499 genera (with 308 genera incertae sedis) at the time of publication. In this treatment we provide notes on each order, families and short notes on each genus. We provide up-to-date DNA based phylogenies for 45 orders and 163 families. Three new genera and 16 new species are introduced with illustrations and descriptions, while 23 new records and three new species combinations are provided. We also list 308 taxa in Sordariomycetes genera incertae sedis. For each family we provide general descriptions and illustrate the type genus or another genus, the latter where the placement has generally been confirmed with molecular data. Both the sexual and asexual morphs representative of a family are illustrated where available. Notes on ecological and economic considerations are also given
    • One stop shop IV: taxonomic update with molecular phylogeny for important phytopathogenic genera: 76–100 (2020)

      Jayawardena, Ruvishika S.; Hyde, Kevin D.; Chen, Yi Jyun; Papp, Viktor; Palla, Balázs; Papp, Dávid; Bhunjun, Chitrabhanu S.; Hurdeal, Vedprakash G.; Senwanna, Chanokned; Manawasinghe, Ishara S.; et al. (Springer Science and Business Media LLC, 2020-09-24)
      This is a continuation of a series focused on providing a stable platform for the taxonomy of phytopathogenic fungi and fungus-like organisms. This paper focuses on one family: Erysiphaceae and 24 phytopathogenic genera: Armillaria, Barriopsis, Cercospora, Cladosporium, Clinoconidium, Colletotrichum, Cylindrocladiella, Dothidotthia,, Fomitopsis, Ganoderma, Golovinomyces, Heterobasidium, Meliola, Mucor, Neoerysiphe, Nothophoma, Phellinus, Phytophthora, Pseudoseptoria, Pythium, Rhizopus, Stemphylium, Thyrostroma and Wojnowiciella. Each genus is provided with a taxonomic background, distribution, hosts, disease symptoms, and updated backbone trees. Species confirmed with pathogenicity studies are denoted when data are available. Six of the genera are updated from previous entries as many new species have been described.
    • Fungi on wild seeds and fruits

      Perera, R. H.; Hyde, K. D.; Maharachchikumbura, S. S.N.; Jones, E. B.G.; McKenzie, E. H.C.; Stadler, M.; Lee, H. B.; Samarakoon, M. C.; Ekanayaka, A. H.; Camporesi, E.; et al. (Mycosphere Press, 2020-09-17)
      This paper reviews and determines the fungi growing on seeds and fruits of wild plants in various habitats. Such fungi colonise a wide range of substrates with most reported from cones, cupules, and leguminous pods that are high in cellulose and lignin content. There are 1348 fungal species (belonging to 230 families and 609 genera) reported from wild seeds and fruits in 84 countries, listed in this paper. Of these, 300 fungi were described from wild seeds and fruit substrates. Members of the Fabaceae support the highest number of taxa, namely 19% of the novel wild fruit fungi. Twenty-eight genera, including 5 fossil fungal genera have been described from wild seeds and fruits: Agarwalomyces, Amorocoelophoma, Anisogenispora, Archephoma, Centrolepidosporium, Cylindroaseptospora, Cylindromyces, Davidhawksworthia, Delonicicola, Discotubeufia, Glaxoa, Kionocephala, Leucaenicola, Naranus, Neolindgomyces, Pleohelicoon, Quercicola, Remotididymella, Repetoblastiella, Restilago, Soloacrosporiella, Strobiloscypha and Tainosphaeria. Archephoma, Meniscoideisporites, Palaeodiplodites, Palaeopericonia and Xylohyphites are the new fossil fungal genera. Fungal asexual morphs predominate on wild seeds and fruits rather than the sexual morphs. The dominant fungal genera on wild seeds and fruits include Alternaria, Aspergillus, Candida, Chaetomium, Cladosporium, Colletotrichum, Curvularia, Diaporthe, Drechslera, Fusarium, Mucor, Penicillium, Pestalotiopsis, Restiosporium, Rhizopus, Talaromyces, Trichoderma and Xylaria. Certain assemblages of fungi have specific and distinct relationships with their hosts, especially Xylaria species (e.g., Xylaria magnoliae on Magnolia fruits; X. xanthinovelutina (= X. ianthino-velutina) on Fabaceae pods; X. carpophila on Fagus cupules; X. persicaria on liquidambar fruits). Whether these species occur as endophytes and become saprobes following fruit fall requires further investigation. In this study, we also made several sexual morph collections of sordariomycetous taxa from different seed and fruit substrates mainly from Thailand, with a few from the UK. These include 15 new species, 13 new host records and 1 new geographical record. The new species are described and illustrated. © 2020, Guizhou Key Laboratory of Agricultural Biotechnology
    • Taxonomy, Diversity and Cultivation of the Oudemansielloid/Xeruloid Taxa Hymenopellis, Mucidula, Oudemansiella, and Xerula and with Respect to Their Bioactivities: A Review.

      Niego, Allen Grace; Raspé, Olivier; Thongklang, Naritsada; Charoensup, Rawiwan; Lumyong, Saisamorn; Stadler, Marc; Hyde, Kevin D; HZI,Helmholtz-Zentrum für Infektionsforschung GmbH, Inhoffenstr. 7,38124 Braunschweig, Germany. (MDPI, 2021-01-13)
      The oudemansielloid/xeruloid taxa Hymenopellis, Mucidula, Oudemansiella, and Xerula are genera of Basidiomycota that constitute an important resource of bioactive compounds. Numerous studies have shown antimicrobial, anti-oxidative, anti-cancer, anti-inflammatory and other bioactivities of their extracts. The bioactive principles can be divided into two major groups: (a) hydrophilic polysaccharides with relatively high molecular weights and (b) low molecular medium polar secondary metabolites, such as the antifungal strobilurins. In this review, we summarize the state of the art on biodiversity, cultivation of the fungi and bioactivities of their secondary metabolites and discuss future applications. Although the strobilurins are well-documented, with commercial applications as agrochemical fungicides, there are also other known compounds from this group that have not yet been well-studied. Polysaccharides, dihydro-citrinone phenol A acid, scalusamides, and acetylenic lactones such as xerulin, also have potential applications in the nutraceutical, pharmaceutical and medicinal market and should be further explored. Further studies are recommended to isolate high quality bioactive compounds and fully understand their modes of action. Given that only few species of oudemansielloid/xeruloid mushrooms have been explored for their production of secondary metabolites, these taxa represent unexplored sources of potentially useful and novel bioactive metabolites.