• Hybridorubrins A-D, novel azaphilone heterodimers from stromata of Hypoxylon fragiforme and insights into the biosynthetic machinery for azaphilone diversification.

      Becker, Kevin; Pfütze, Sebastian; Kuhnert, Eric; Cox, Russell; Stadler, Marc; Surup, Frank; HZI,Helmholtz-Zentrum für Infektionsforschung GmbH, Inhoffenstr. 7,38124 Braunschweig, Germany. (Wiley-VCH, 2020-08-04)
      The diversity of azaphilones in stromatal extracts of the fungus Hypoxylon fragiforme was investigated and linked to their biosynthetic machineries using bioinformatics. Nineteen azaphilone-type compounds were isolated and characterized by NMR spectroscopy and mass spectrometry, with their absolute stereoconfigurations assigned using Mosher ester analysis and ECD spectroscopy. Four unprecedented bisazaphilones, named hybridorubrins A-D ( 1 - 4 ), were elucidated, in addition to new fragirubrins F-G ( 5 - 6 ) and various known mitorubrin derivatives. Only the hybridorubrins, which are composed of mitorubrin and fragirubrin moieties, exhibited strong inhibition of Staphylococcus aureus biofilm formation. Analysis of the genome of H. fragiforme revealed the presence of two separate biosynthetic gene clusters (BGC) hfaza1 and hfaza2 responsible for azaphilone formation. While the hfaza1 BGC likely encodes the assembly of the backbone and addition of fatty acid moieties to yield the ( R )-configured series of fragirubrins, the hfaza2 BGC contains the necessary genes to synthesise the widely distributed ( S )-mitorubrins. This study is the first example of two distant cross-acting fungal BGC collaborating to produce two families of azaphilones and bisazaphilones derived thereof.
    • Unsaturated Fatty Acids Control Biofilm Formation of and Other Gram-Positive Bacteria.

      Yuyama, Kamila Tomoko; Rohde, Manfred; Molinari, Gabriella; Stadler, Marc; Abraham, Wolf-Rainer; HZI,Helmholtz-Zentrum für Infektionsforschung GmbH, Inhoffenstr. 7,38124 Braunschweig, Germany. (MDPI, 2020-11-08)
      Infections involving biofilms are difficult to treat due to increased resistances against antibiotics and the immune system. Hence, there is an urgent demand for novel drugs against biofilm infections. During our search for novel biofilm inhibitors from fungi, we isolated linoleic acid from the ascomycete Hypoxylon fragiforme which showed biofilm inhibition of several bacteria at sub-MIC concentrations. Many fatty acids possess antimicrobial activities, but their minimum inhibitory concentrations (MIC) are high and reports on biofilm interferences are scarce. We demonstrated that not only linoleic acid but several unsaturated long-chain fatty acids inhibited biofilms at sub-MIC concentrations. The antibiofilm activity exerted by long-chain fatty acids was mainly against Gram-positive bacteria, especially against Staphylococcus aureus. Micrographs of treated S. aureus biofilms revealed a reduction in the extracellular polymeric substances, pointing to a possible mode of action of fatty acids on S. aureus biofilms. The fatty acids had a strong species specificity. Poly-unsaturated fatty acids had higher activities than saturated ones, but no obvious rule could be found for the optimal length and desaturation for maximal activity. As free fatty acids are non-toxic and ubiquitous in food, they may offer a novel tool, especially in combination with antibiotics, for the control of biofilm infections.