• Acetyl-CoA carboxylase 1 regulates endothelial cell migration by shifting the phospholipid composition.

      Glatzel, Daniel K; Koeberle, Andreas; Pein, Helmut; Löser, Konstantin; Stark, Anna; Keksel, Nelli; Werz, Oliver; Müller, Rolf; Bischoff, Iris; Fürst, Robert; et al. (2018-02)
      The enzyme acetyl-CoA carboxylase (ACC) plays a crucial role in fatty acid metabolism. In recent years, ACC has been recognized as a promising drug target for treating different diseases. However, the role of ACC in vascular endothelial cells (ECs) has been neglected so far. To characterize the role of ACC, we used the ACC inhibitor, soraphen A, as a chemical tool, and also a gene silencing approach. We found that ACC1 was the predominant isoform in human umbilical vein ECs as well as in human microvascular ECs and that soraphen A reduced the levels of malonyl-CoA. We revealed that ACC inhibition shifted the lipid composition of EC membranes. Accordingly, membrane fluidity, filopodia formation, and migratory capacity were reduced. The antimigratory action of soraphen A depended on an increase in the cellular proportion of PUFAs and, most importantly, on a decreased level of phosphatidylglycerol. Our study provides a causal link between ACC, membrane lipid composition, and cell migration in ECs. Soraphen A represents a useful chemical tool to investigate the role of fatty acid metabolism in ECs and ACC inhibition offers a new and valuable therapeutic perspective for the treatment of EC migration-related diseases.
    • Aethiopinolones A-E, New Pregnenolone Type Steroids from the East African Basidiomycete Fomitiporia aethiopica.

      Chepkirui, Clara; Sum, Winnie C; Cheng, Tian; Matasyoh, Josphat C; Decock, Cony; Stadler, Marc; Helmholtz-Zentrum für Infektionsforschung GmbH, Inhoffenstr. 7, 38124 Braunschweig, Germany. (2018-02-09)
      A mycelial culture of the Kenyan basidiomyceteFomitiporia aethiopicawas fermented on rice and the cultures were extracted with methanol. Subsequent HPLC profiling and preparative chromatography of its crude extract led to the isolation of five previously undescribed pregnenolone type triterpenes1-5, for which we propose the trivial name aethiopinolones A-E. The chemical structures of the aethiopinolones were determined by extensive 1D- and 2D-NMR, and HRMS data analysis. The compounds exhibited moderate cytotoxic effects against various human cancer cell lines, but they were found devoid of significant nematicidal and antimicrobial activities.
    • Akanthopyrones A-D, α-Pyrones Bearing a 4-O-Methyl-β-d-glucopyranose Moiety from the Spider-Associated Ascomycete Akanthomyces novoguineensis.

      Kuephadungphan, Wilawan; Helaly, Soleiman E; Daengrot, Charuwan; Phongpaichit, Souwalak; Luangsa-Ard, Janet Jennifer; Rukachaisirikul, Vatcharin; Stadler, Marc; Helmholtz Centre for infection research, Inhoffenstr. 7, 38124 Braunschweig, Germany. (2017-07-18)
      Hypocrealean fungi have proved to be prolific bioactive metabolite producers; they have caught the attention of mycologists throughout the world. However, only a few studies on the insect and spider parasitic genus Akanthomyces have so far been carried out. In this study, we report the isolation, structural elucidation and biological activities of four unprecedented glycosylated α-pyrone derivatives, akanthopyrones A-D (1-4), from a culture of Akanthomyces novoguineensis collected in Thailand. The chemical structures of the akanthopyrones were determined by extensive 1D- and 2D-NMR, and HRMS spectroscopic analysis. Their absolute configurations were determined. Akanthopyrone A (1) exhibited weak antimicrobial activity against Bacillus subtilis DSM10 and cytotoxicity against the HeLa cell line KB-3-1, while akanthopyrone D (4) showed weak activity against Candida tenuis MUCL 29892.
    • Alpha-Glucosidase- and Lipase-Inhibitory Phenalenones from a New Species of Originating from Thailand.

      Macabeo, Allan Patrick G; Pilapil, Luis Agustin E; Garcia, Katherine Yasmin M; Quimque, Mark Tristan J; Phukhamsakda, Chayanard; Cruz, Allaine Jean C; Hyde, Kevin D; Stadler, Marc; HZI,Helmholtz-Zentrum für Infektionsforschung GmbH, Inhoffenstr. 7,38124 Braunschweig, Germany. (MDPI, 2020-02-20)
      The alpha-glucosidase- and lipase-inhibitory activities of three phenalenones (1-3) and one phenylpropanoid (4) from the ethyl acetate extracts of a Pseudolophiosptoma sp. are described. They represent the first secondary metabolites reported from the genus Pseudolophiostoma. Scleroderolide (1) and sclerodione (2) exhibited potent α-glucosidase- and porcine-lipase-inhibitory activity during primary screening, with better IC50 values compared to the positive controls, N-deoxynojirimycin and orlistat. In silico techniques were employed to validate the probable biological targets and elucidate the mechanism of actions of phenalenones 1 and 2. Both compounds exhibited strong binding affinities to both alpha-glucosidase and porcine lipase through H-bonding and π-π interactions. Interestingly, favorable in silico ADME (absorption, distribution, metabolism, and excretion) properties such as gastrointestinal absorption were also predicted using software.
    • The amazing potential of fungi: 50 ways we can exploit fungi industrially

      Hyde, Kevin D.; Xu, Jianchu; Rapior, Sylvie; Jeewon, Rajesh; Lumyong, Saisamorn; Niego, Allen Grace T.; Abeywickrama, Pranami D.; Aluthmuhandiram, Janith V.S.; Brahamanage, Rashika S.; Brooks, Siraprapa; et al. (Springer, 2019-07-31)
      Fungi are an understudied, biotechnologically valuable group of organisms. Due to the immense range of habitats that fungi inhabit, and the consequent need to compete against a diverse array of other fungi, bacteria, and animals, fungi have developed numerous survival mechanisms. The unique attributes of fungi thus herald great promise for their application in biotechnology and industry. Moreover, fungi can be grown with relative ease, making production at scale viable. The search for fungal biodiversity, and the construction of a living fungi collection, both have incredible economic potential in locating organisms with novel industrial uses that will lead to novel products. This manuscript reviews fifty ways in which fungi can potentially be utilized as biotechnology. We provide notes and examples for each potential exploitation and give examples from our own work and the work of other notable researchers. We also provide a flow chart that can be used to convince funding bodies of the importance of fungi for biotechnological research and as potential products. Fungi have provided the world with penicillin, lovastatin, and other globally significant medicines, and they remain an untapped resource with enormous industrial potential.
    • Amidochelocardin Overcomes Resistance Mechanisms Exerted on Tetracyclines and Natural Chelocardin.

      Hennessen, Fabienne; Miethke, Marcus; Zaburannyi, Nestor; Loose, Maria; Lukežič, Tadeja; Bernecker, Steffen; Hüttel, Stephan; Jansen, Rolf; Schmiedel, Judith; Fritzenwanker, Moritz; et al. (MDPI, 2020-09-18)
      The reassessment of known but neglected natural compounds is a vital strategy for providing novel lead structures urgently needed to overcome antimicrobial resistance. Scaffolds with resistance-breaking properties represent the most promising candidates for a successful translation into future therapeutics. Our study focuses on chelocardin, a member of the atypical tetracyclines, and its bioengineered derivative amidochelocardin, both showing broad-spectrum antibacterial activity within the ESKAPE (Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter species) panel. Further lead development of chelocardins requires extensive biological and chemical profiling to achieve favorable pharmaceutical properties and efficacy. This study shows that both molecules possess resistance-breaking properties enabling the escape from most common tetracycline resistance mechanisms. Further, we show that these compounds are potent candidates for treatment of urinary tract infections due to their in vitro activity against a large panel of multidrug-resistant uropathogenic clinical isolates. In addition, the mechanism of resistance to natural chelocardin was identified as relying on efflux processes, both in the chelocardin producer Amycolatopsis sulphurea and in the pathogen Klebsiella pneumoniae. Resistance development in Klebsiella led primarily to mutations in ramR, causing increased expression of the acrAB-tolC efflux pump. Most importantly, amidochelocardin overcomes this resistance mechanism, revealing not only the improved activity profile but also superior resistance-breaking properties of this novel antibacterial compound.
    • Antifungal metabolites from marine-derived Streptomyces sp. AMA49 against Pyricularia oryzae

      Buatong, Jirayu; Rukachaisirikul, Vatcharin; Sangkanu, Suthinee; Surup, Frank; Phongpaichit, Souwalak; HZI,Helmholtz-Zentrum für Infektionsforschung GmbH, Inhoffenstr. 7,38124 Braunschweig, Germany. (Oriental Scientific Pub Co(according to Zezoc), 2019-01-01)
      Marine-derived actinobacteria are considered as potential sources of bioactive metabolites including antifungal substances. Fifteen out of 155 marine-derived actinobacteria exhibited strong antifungal activity against the rice blast fungus Pyricularia oryzae. Their extracts were further determined for minimum inhibitory concentrations (MIC) and minimum fungicidal concentrations (MFC). Ethyl acetate extract from the strain AMA49 and its subfraction AMA49F1 strongly inhibited hyphal growth of various P. oryzae strains with MICs (8 to 16µg/ml) and MFCs (16 to 128µg/ml) comparable to propiconazole. Both extracts destroyed fungal membrane and organelles, completely inhibited conidial germination, appressorium formation, and were non-toxic to Galleria mellonella. High performance liquid chromatography/mass spectrometry identified oligomycin A and its derivatives as the active components of AMA49F1 besides several diketopiperazines. AMA49 was identified as a Streptomyces sp. based on morphological characteristics and 16S rDNA sequence analysis. The results suggest that the Streptomyces sp. strain AMA49 is a potential biocontrol agent against rice blast pathogen P. oryzae. This is the first report on the inhibitory effect of the marine-derived Streptomyces extract containing oligomycin A and its derivatives on mycelial growth, conidial germination and appressorium formation of P. oryzae.
    • Antifungal Sesquiterpenoids, Rhodocoranes, from Submerged Cultures of the Wrinkled Peach Mushroom, Rhodotus palmatus.

      Sandargo, Birthe; Michehl, Maira; Stadler, Marc; Surup, Frank; HZI,Helmholtz-Zentrum für Infektionsforschung GmbH, Inhoffenstr. 7,38124 Braunschweig, Germany. (Elsevier, 2019-12-10)
      Seven previously unknown sesquiterpenoids and norsesquiterpenoids, rhodocoranes F-L (1-7), were isolated from the fermentation broth of the basidiomycete Rhodotus palmatus. Their structures were elucidated utilizing 1D and 2D NMR techniques as well as HRESIMS; they are unusual noracorane, spiro[4.4]nonene, and acorane-type sesquiterpenoids. They include the first naturally occurring cyclopentylidenefuranones (3-5) and the new tricyclic scaffold of 7. Metabolites 1-7 exhibited a general mild antimycotic activity, while 1-3 also displayed cytotoxic effects.
    • Antiviral 4-Hydroxypleurogrisein and Antimicrobial Pleurotin Derivatives from Cultures of the Nematophagous Basidiomycete .

      Sandargo, Birthe; Thongbai, Benjarong; Praditya, Dimas; Steinmann, Eike; Stadler, Marc; Surup, Frank; HZI,Helmholtz-Zentrum für Infektionsforschung GmbH, Inhoffenstr. 7,38124 Braunschweig, Germany; TWINCORE, Zentrum für experimentelle und klinische Infektionsforschung GmbH,Feodor-Lynen Str. 7, 30625 Hannover, Germany. (2018-10-19)
      4-Hydroxypleurogrisein, a congener of the anticancer-lead compound pleurotin, as well as six further derivatives were isolated from the basidiomycete Hohenbuehelia grisea, strain MFLUCC 12-0451. The structures were elucidated utilizing high resolution electron spray ionization mass spectrometry (HRESIMS) and 1D and 2D nuclear magnetic resonance (NMR) spectral data and evaluated for their biological activities; for leucopleurotin, we provide Xray data. While most congeners showed moderate antimicrobial and cytotoxic activity, 4-hydroxypleurogrisein emerged as an inhibitor of hepatitis C virus infectivity in mammalian liver cells.
    • Antiviral Meroterpenoid Rhodatin and Sesquiterpenoids Rhodocoranes A-E from the Wrinkled Peach Mushroom, Rhodotus palmatus.

      Sandargo, Birthe; Michehl, Maira; Praditya, Dimas; Steinmann, Eike; Stadler, Marc; Surup, Frank; HZI,Helmholtz-Zentrum für Infektionsforschung GmbH, Inhoffenstr. 7,38124 Braunschweig, Germany; TWINCORE, Zentrum für experimentelle und klinische Infektionsforschung GmbH,Feodor-Lynen Str. 7, 30625 Hannover, Germany. (American Chemical Society, 2019-05-03)
      Rhodatin (1), a meroterpenoid featuring a unique pentacyclic scaffold with both spiro and spiroketal centers, and five unusual acorane-type sesquiterpenoids, named rhodocoranes A-E (2-6, respectively), are the first natural products isolated from the basidiomycete Rhodotus palmatus. Their structures were elucidated by two-dimensional NMR experiments and HRESIMS, while the absolute configuration of the substance family was determined by Mosher's method utilizing 2. Rhodatin strongly inhibited hepatitis C virus, whereas 4 displayed cytotoxicity and selective antifungal activity.
    • The application of the name Xylaria hypoxylon, based on Clavaria hypoxylon of Linnaeus.

      Stadler, Marc; Hawksworth, David L; Fournier, Jacques (2014-06)
      Although Xylaria hypoxylon is one of the most familiar fungi of temperate regions, the basionym of the name, Clavaria hypoxylon of Linnaeus, has remained untypified. Here we assess the original five elements included in the 1753 protologue; no candidate specimen was located but two illustrations Linnaeus cited were considered, one a mixture of species and the other fanciful. As the name is sanctioned, following clarifications in the Melbourne Code, elements cited by Fries when the name was sanctioned in 1823 are also candidates for lectotypification. In addition to various illustrations, Fries cites two exsiccatae, and one from his own Scleromycetes Suecicae distributed in 1821 is designated as lectotype for Linnaeus' name here. In view of the complexity of the group as revealed by molecular systematic work, and the poor state of the Fries material, we also designate a sequenced epitype from Sweden. We stress the importance of examining fungi in the complex in the sexual state, as those that are asexual can be difficult to identify conclusively. Figures of the original protologues and the most pertinent illustrations and specimens are provided, along with a detailed description and illustrations based on recent collections.
    • Bacillus methylotrophicus ASWU-C2, a strain inhabiting hot desert soil, a new source for antibacterial bacillopyrone, pyrophen, and cyclopeptides

      Helaly, Soleiman E.; Hamad, Zainab; El Sayed, Magdi A.; Abdel-Motaal, Fatma F.; Nassar, Mahmoud I.; Ito, Shin-ichi; Stadler, Marc; HZI,Helmholtz-Zentrum für Infektionsforschung GmbH, Inhoffenstr. 7,38124 Braunschweig, Germany. (Walter de Gruyter, 2018-12-14)
    • Bacterial type III polyketide synthases: phylogenetic analysis and potential for the production of novel secondary metabolites by heterologous expression in pseudomonads.

      Gross, Frank; Luniak, Nora; Perlova, Olena; Gaitatzis, Nikolaos; Jenke-Kodama, Holger; Gerth, Klaus; Gottschalk, Daniela; Dittmann, Elke; Müller, Rolf (2006-03-01)
      Type III polyketide synthases (PKS) were regarded as typical for plant secondary metabolism before they were found in microorganisms recently. Due to microbial genome sequencing efforts, more and more type III PKS are found, most of which of unknown function. In this manuscript, we report a comprehensive analysis of the phylogeny of bacterial type III PKS and report the expression of a type III PKS from the myxobacterium Sorangium cellulosum in pseudomonads. There is no precedent of a secondary metabolite that might be biosynthetically correlated to a type III PKS from any myxobacterium. Additionally, an inactivation mutant of the S. cellulosum gene shows no physiological difference compared to the wild-type strain which is why these type III PKS are assumed to be "silent" under the laboratory conditions administered. One type III PKS (SoceCHS1) was expressed in different Pseudomonas sp. after the heterologous expression in Escherichia coli failed. Cultures of recombinant Pseudomonas sp. harbouring SoceCHS1 turned red upon incubation and the diffusible pigment formed was identified as 2,5,7-trihydroxy-1,4-naphthoquinone, the autooxidation product of 1,3,6,8-tetrahydroxynaphthalene. The successful heterologous production of a secondary metabolite using a gene not expressed under administered laboratory conditions provides evidence for the usefulness of our approach to activate such secondary metabolite genes for the production of novel metabolites.
    • Bioactive Compounds Produced by Hypoxylon fragiforme against Staphylococcus aureus Biofilms.

      Yuyama, Kamila Tomoko; Chepkirui, Clara; Wendt, Lucile; Fortkamp, Diana; Stadler, Marc; Abraham, Wolf-Rainer; Helmholtz-Zentrum für Infektionsforschung GmbH, Inhoffenstr. 7, 38124 Braunschweig, Germany. (2017-12-12)
      Treating infections organized in biofilms is a challenge due to the resistance of the pathogens against antibiotics and host immune cells. Many fungi grow in a wet environment, favorable for the growth of bacterial biofilms, and we speculated that fungi possess some strategies to control these bacterial biofilms. A fungus identified as Hypoxylon fragiforme, was collected in the Harz Mountains, Germany, and its mycelial culture was fermented in different culture media for 67 days to test its biological potential against bacterial biofilms. Sclerin, sclerin diacid and its 3-methyl monoester (methyl 1-(5-hydroxy-6-carboxylic-2,3,4-trimethylphenyl) propionate) are here described for the first time from this fungus. Sclerin and its diacid interfered with the biofilm formation of the pathogen Staphylococcus aureus, inhibiting 86% and 80% of the biofilm at 256 μg mL-1, respectively, but not killing the bacterium. Interestingly, the monomethylester of sclerin diacid was inactive. Although these compounds did not possess any activity against a pre-formed biofilm, they prevented its formation at subtoxic concentrations. Furthermore, sclerin and its diacid displayed a high specificity against Staphylococcus aureus, indicating a good strategy against pathogenic biofilms when combined with antibiotics.
    • Biofilm Inhibitory Abscisic Acid Derivatives from the Plant-Associated Dothideomycete Fungus, sp.

      Phukhamsakda, Chayanard; Macabeo, Allan Patrick G; Yuyama, Kamila Tomoko; Hyde, Kevin David; Stadler, Marc; HZI,Helmholtz-Zentrum für Infektionsforschung GmbH, Inhoffenstr. 7,38124 Braunschweig, Germany. (2018-08-30)
      Roussoella species are well recorded from both monocotyledons and dicotyledons. As part of a research program to discover biologically active compounds from plant-associated Dothideomycetes in Thailand, the strain Roussoella sp. (MFLUCC 17-2059), which represents an undescribed species, was isolated from Clematis subumbellata Kurz, fermented in yeast-malt medium and explored for its secondary metabolite production. Bioassay-guided fractionation of the crude extract yielded the new abscisic acid derivative, roussoellenic acid (1), along with pestabacillin B (2), a related congener, and the cyclodipeptide, cyclo(S-Pro-S-Ile) (3). The structure of 1 was determined by 2D NMR spectroscopy and HR-ESIMS data analysis. Compounds 1 and 2 showed inhibitory activity on biofilm formation by Staphylococcus aureus. The biofilm formation of S. aureus was reduced to 34% at 16 µg/mL by roussoellenic acid (1), while pestabacillin B (2) only showed 36% inhibition at 256 µg/mL. In addition, compound 1 also had weak cytotoxic effects on L929 murine fibroblasts and human KB3-1 cancer cells.
    • Biological and chemical diversity go hand in hand: Basidiomycota as source of new pharmaceuticals and agrochemicals.

      Sandargo, Birthe; Chepkirui, Clara; Cheng, Tian; Chaverra-Muñoz, Lillibeth; Thongbai, Benjarong; Stadler, Marc; Hüttel, Stephan; HZI,Helmholtz-Zentrum für Infektionsforschung GmbH, Inhoffenstr. 7,38124 Braunschweig, Germany. (Elsevier, 2019-02-07)
      The Basidiomycota constitutes the second largest higher taxonomic group of the Fungi after the Ascomycota and comprises over 30.000 species. Mycelial cultures of Basidiomycota have already been studied since the 1950s for production of antibiotics and other beneficial secondary metabolites. Despite the fact that unique and selective compounds like pleuromutilin were obtained early on, it took several decades more until they were subjected to a systematic screening for antimicrobial and anticancer activities. These efforts led to the discovery of the strobilurins and several hundreds of further compounds that mainly constitute terpenoids. In parallel the traditional medicinal mushrooms of Asia were also studied intensively for metabolite production, aimed at finding new therapeutic agents for treatment of various diseases including metabolic disorders and the central nervous system. While the evaluation of this organism group has in general been more tedious as compared to the Ascomycota, the chances to discover new metabolites and to develop them further to candidates for drugs, agrochemicals and other products for the Life Science industry have substantially increased over the past decade. This is owing to the revolutionary developments in -OMICS techniques, bioinformatics, analytical chemistry and biotechnological process technology, which are steadily being developed further. On the other hand, the new developments in polythetic fungal taxonomy now also allow a more concise selection of previously untapped organisms. The current review is dedicated to summarize the state of the art and to give an outlook to further developments.
    • The Biomolecular Spectrum Drives Microbial Biology and Functions in Agri-Food-Environments.

      Sharma, Minaxi; Singh, Dhananjaya Pratap; Rangappa, Kanchugarakoppal S; Stadler, Marc; Mishra, Pradeep Kumar; Silva, Roberto Nascimento; Prasad, Ram; Gupta, Vijai Kumar; HZI, Helmholtz Zentrum für Infektionsforschung GmbH, Inhoffenstr. 7, 38124 Braunschweig, Germany. (MDPI, 2020-03-04)
      Microbial biomolecules have huge commercial and industrial potential. In nature, biological interactions are mostly associated with biochemical and biological diversity, especially with the discovery of associated biomolecules from microbes. Within cellular or subcellular systems, biomolecules signify the actual statuses of the microorganisms. Understanding the biological prospecting of the diverse microbial community and their complexities and communications with the environment forms a vital basis for active, innovative biotechnological breakthroughs. Biochemical diversity rather than the specific chemicals that has the utmost biological importance. The identification and quantification of the comprehensive biochemical diversity of the microbial molecules, which generally consequences in a diversity of biological functions, has significant biotechnological potential. Beneficial microbes and their biomolecules of interest can assist as potential constituents for the wide-range of natural product-based preparations and formulations currently being developed on an industrial scale. The understanding of the production methods and functions of these biomolecules will contribute to valorisation of agriculture, food bioprocessing and biopharma, and prevent human diseases related to the environment.
    • Botryane, noreudesmane and abietane terpenoids from the ascomycete Hypoxylon rickii.

      Kuhnert, Eric; Surup, Frank; Wiebach, Vincent; Bernecker, Steffen; Stadler, Marc; Helmholtz Centre for infection research, Inhoffenstr. 7, D-38124 Braunschweig, Germany. (2015-09)
      In the course of our screening for new bioactive natural products, a culture of Hypoxylon rickii, a xylariaceous ascomycete collected from the Caribbean island Martinique, was identified as extraordinary prolific producer of secondary metabolites. Ten metabolites of terpenoid origin were isolated from submerged cultures of this species by preparative HPLC. Their structures were elucidated using spectral techniques including 2D NMR and HRESIMS. Three of the compounds were elucidated as new botryanes (1-3) along with three known ones, i.e. (3aS)-3a,5,5,8-tetramethyl-3,3a,4,5-tetrahydro-1H-cyclopenta[de]isochromen-1-one (4), (3aS,8R)-3a,5,5,8-tetramethyl-3,3a,4,5,7,8-hexahydro-1H-cyclopenta[de]isochromen-1-one (5) and botryenanol (6). Further three new sesquiterpenoids featured a 14-noreudesmane-type skeleton and were named hypoxylan A-C (7-9); the diterpenoid rickitin A (10) contains an abietane-type backbone. Compounds 1, 2, 3, 7, and 10 showed cytotoxic effects against murine cells.
    • Carolacton - A macrolide ketocarbonic acid that reduces biofilm formation by the caries- and endocarditis-associated bacterium Streptococcus mutans

      Jansen, Rolf; Microbial Drugs, Helmholtz Centre for Infection Research, Inhoffenstr. 7, 38124 Braunschweig (Germany) (Wiley Interscience, 2010-03)
    • Characterizing the Epothilone Binding Site on β-Tubulin by Photoaffinity Labeling: Identification of β-Tubulin Peptides TARGSQQY and TSRGSQQY as Targets of an Epothilone Photoprobe for Polymerized Tubulin.

      Ranade, Adwait R; Higgins, LeeAnn; Markowski, Todd W; Glaser, Nicole; Kashin, Dmitry; Bai, Ruoli; Hong, Kwon Ho; Hamel, Ernest; Höfle, Gerhard; Georg, Gunda I; et al. (2016-04-14)
      Photoaffinity labeling with an epothilone A photoprobe led to the identification of the β-tubulin peptides TARGSQQY and TSRGSQQY as targets of the photoprobe for polymerized tubulin. These peptides represent residues 274-281 in different β-tubulin isotypes. Placing the carbene producing 21-diazo/triazolo moiety of the photoprobe in the vicinity of the TARGSQQY peptide in a homology model of TBB3 predicted a binding pose and conformation of the photoprobe that are very similar to the ones reported for 1) the high resolution cocrystal structure of epothilone A with an α,β-tubulin complex and for 2) a saturation transfer difference NMR and transferred NOESY NMR study of dimeric and polymerized tubulin. Our findings thus provide additional support for these models as physiologically the most relevant among several modes of binding that have been proposed for epothilone A in the taxane pocket of β-tubulin.