• Natural products in drug discovery: advances and opportunities.

      Atanasov, Atanas G; Zotchev, Sergey B; Dirsch, Verena M; Supuran, Claudiu T; HZI,Helmholtz-Zentrum für Infektionsforschung GmbH, Inhoffenstr. 7,38124 Braunschweig, Germany.; HIPS, Helmholtz-Institut für Pharmazeutische Forschung Saarland, Universitätscampus E8.1 66123 Saarbrücken, Germany. (Springer Nature, 2021-01-28)
      Natural products and their structural analogues have historically made a major contribution to pharmacotherapy, especially for cancer and infectious diseases. Nevertheless, natural products also present challenges for drug discovery, such as technical barriers to screening, isolation, characterization and optimization, which contributed to a decline in their pursuit by the pharmaceutical industry from the 1990s onwards. In recent years, several technological and scientific developments - including improved analytical tools, genome mining and engineering strategies, and microbial culturing advances - are addressing such challenges and opening up new opportunities. Consequently, interest in natural products as drug leads is being revitalized, particularly for tackling antimicrobial resistance. Here, we summarize recent technological developments that are enabling natural product-based drug discovery, highlight selected applications and discuss key opportunities.
    • New developments in mycological taxonomy and nomenclature and news about the future development of Mycological Progress.

      Stadler, Marc; Weber, Evi; HZI,Helmholtz-Zentrum für Infektionsforschung GmbH, Inhoffenstr. 7,38124 Braunschweig, Germany. (Springer Nature, 2021-03-27)
      [No abstract available]
    • A new genus Allodiatrype, five new species and a new host record of diatrypaceous fungi from palms (Arecaceae)

      Konta, S; et al.; HZI,Helmholtz-Zentrum für Infektionsforschung GmbH, Inhoffenstr. 7,38124 Braunschweig, Germany. (Mushroom Research Foundation, 2020-01-28)
      Diatrypaceous fungi on palms (Arecaceae) in Thailand were collected and identified based on morphological characteristics as well as combined DNA sequence analyses (ITS and TUB2). One new genus Allodiatrype, and five new species, Allocryptovalsa elaeidis, Allodiatrype arengae, A. elaeidicola, A. elaeidis and Diatrypella elaeidis are introduced. A checklist of Diatrypaceae occurring on palms (Arecaceae) and Thai diatrypaceous fungi is also provided.
    • New nematicidal and antimicrobial secondary metabolites from a new species in the new genus, .

      Rupcic, Zeljka; Chepkirui, Clara; Hernández-Restrepo, Margarita; Crous, Pedro W; Luangsa-Ard, Janet Jennifer; Stadler, Marc; Helmholtz-Zentrum für Infektionsforschung GmbH, Inhoffenstr. 7, 38124 Braunschweig, Germany. (2018-01-01)
      During the course of a study on the functional biodiversity of the mycobiota inhabiting rainforests in Thailand, a fungal strain was isolated from a plant sample and shown to represent an undescribed species, as inferred from a combination of morphological and molecular phylogenetic methods. Molecular phylogenetic analyses, based on four DNA loci, revealed a phylogenetic tree with the newly generated sequences clustering in a separate branch, together with members of the Sulcatisporaceae (Pleosporales, Ascomycota). The Thai specimen morphologically resembled
    • New nematicidal and antimicrobial secondary metabolites from a new species in the new genus, .

      Rupcic, Zeljka; Chepkirui, Clara; Hernández-Restrepo, Margarita; Crous, Pedro W; Luangsa-Ard, Janet Jennifer; Stadler, Marc; Helmholtz-Zentrum für Infektionsforschung GmbH, Inhoffenstr. 7, 38124 Braunschweig, Germany. (2018-01-01)
      During the course of a study on the functional biodiversity of the mycobiota inhabiting rainforests in Thailand, a fungal strain was isolated from a plant sample and shown to represent an undescribed species, as inferred from a combination of morphological and molecular phylogenetic methods. Molecular phylogenetic analyses, based on four DNA loci, revealed a phylogenetic tree with the newly generated sequences clustering in a separate branch, together with members of the Sulcatisporaceae (Pleosporales, Ascomycota). The Thai specimen morphologically resembled
    • New Peptaibiotics and a Cyclodepsipeptide from : Isolation, Identification, Cytotoxic and Nematicidal Activities.

      Moussa, Ashaimaa Y; Lambert, Christopher; Stradal, Theresia E B; Ashrafi, Samad; Maier, Wolfgang; Stadler, Marc; Helaly, Soleiman E; HZI,Helmholtz-Zentrum für Infektionsforschung GmbH, Inhoffenstr. 7,38124 Braunschweig, Germany. (MDPI, 2020-03-22)
      Fungal associations with nematodes have attracted scientific attention because of the need to develop new biocontrol agents. In this context, Ijuhya vitellina, an antagonistic fungus previously isolated from the plant parasitic cyst nematode Heterodera filipjevi, was selected to carry out an in-depth metabolomic study for its active metabolites. Herein, three new nonapeptide peptaibols with leucinostatin based sequences were isolated and identified by 1, 2D NMR, and HR-ESI-MS-MS. The absolute configuration was assigned based on Marfay's analysis and Mosher ester formation. The new leucinostatins manifested moderate nematicidal effect against the plant pathogenic nematode Pratylenchus penetrans with LD90 values ranging from 5 to 7 µg/mL. Furthermore, a cyclodepsipeptide, named arthrichitin D, with five amino acid residues attached to a 3-hydroxy-2,4-dimethylhexadeca-4,6-dienoic fatty acid chain was discovered and showed weak nematicidal effect against Caenorhabditis elegans. Chaetoglobosin B and its 19-O-acetyl derivative were also obtained as minor metabolites, and the activity of chaetoglobosin B on the actin cytoskeleton of mammalian cells was assessed.
    • New secondary metabolites produced by the phytopathogenic fungus Wilsonomyces carpophilus

      Narmani, Abolfazl; Teponno, Rémy Bertrand; Arzanlou, Mahdi; Babai-Ahari, Asadollah; Stadler, Marc; Helmholtz-Zentrum für Infektionsforschung GmbH, Inhoffenstr. 7, 38124 Braunschweig, Germany.
      wo new metabolites possessing the unusual 1-oxa-7-azaspiro[4.4]non-2- ene-4,6-dione core (2, 3) along with the recently described pseurotin A3 (1) were isolated from the pathogenic fungus Wilsonomyces carpophilus(previously named Stigmina carpophila). The producer organism was obtained from Prunus armeniaca collected in Iran and was identified by morphological and molecular phylogenetic methods. The structures of the isolated compounds were elucidated on the basis of extensive NMR spectroscopic analysis, high-resolution mass spectrometry and ECD analysis. The compounds were screened for their antimicrobial, cytotoxic, nematicidal and biofilm inhibition activities but, no significant effect was observed. To the best of our knowledge, this is the first report on the isolation of secondary metabolites produced by W. carpophilus.
    • New terpenoids from the fermentation broth of the edible mushroom .

      Surup, Frank; Hennicke, Florian; Sella, Nadine; Stroot, Maria; Bernecker, Steffen; Pfütze, Sebastian; Stadler, Marc; Rühl, Martin; HZI,Helmholtz-Zentrum für Infektionsforschung GmbH, Inhoffenstr. 7,38124 Braunschweig, Germany. (Beilstein Institut, 2019-01-01)
      The strophariaceous basidiomycete Cyclocybe aegerita (synonyms Agrocybe aegerita and A. cylindracea) is one of the most praised cultivated edible mushrooms and is being cultivated at large scale for food production. Furthermore, the fungus serves as a model organism to study fruiting body formation and the production of secondary metabolites during the life cycle of Basidiomycota. By studying the secondary metabolite profiles of C. aegerita, we found several terpenoids in submerged cultures. Aside from the main metabolite, bovistol (1), two new bovistol derivatives B and C (2, 3) and pasteurestin C as a new protoilludane (4) were isolated by preparative HPLC. Their structures were elucidated by mass spectrometry and NMR spectroscopy. The relative configurations of 2-4 were assigned by ROESY correlations, and 3JH,H coupling constants in the case of 4. Applying quantitative PCR for gene expression validation, we linked the production of bovistol and its derivatives to the respective biosynthesis gene clusters.
    • Nomenclatural issues concerning cultured yeasts and other fungi: why it is important to avoid unneeded name changes.

      Yurkov, Andrey; Alves, Artur; Bai, Feng-Yan; Boundy-Mills, Kyria; Buzzini, Pietro; Čadež, Neža; Cardinali, Gianluigi; Casaregola, Serge; Chaturvedi, Vishnu; Collin, Valérie; et al. (BMC, 2021-07-13)
      The unambiguous application of fungal names is important to communicate scientific findings. Names are critical for (clinical) diagnostics, legal compliance, and regulatory controls, such as biosafety, food security, quarantine regulations, and industrial applications. Consequently, the stability of the taxonomic system and the traceability of nomenclatural changes is crucial for a broad range of users and taxonomists. The unambiguous application of names is assured by the preservation of nomenclatural history and the physical organisms representing a name. Fungi are extremely diverse in terms of ecology, lifestyle, and methods of study. Predominantly unicellular fungi known as yeasts are usually investigated as living cultures. Methods to characterize yeasts include physiological (growth) tests and experiments to induce a sexual morph; both methods require viable cultures. Thus, the preservation and availability of viable reference cultures are important, and cultures representing reference material are cited in species descriptions. Historical surveys revealed drawbacks and inconsistencies between past practices and modern requirements as stated in the International Code of Nomenclature for Algae, Fungi, and Plants (ICNafp). Improper typification of yeasts is a common problem, resulting in a large number invalid yeast species names. With this opinion letter, we address the problem that culturable microorganisms, notably some fungi and algae, require specific provisions under the ICNafp. We use yeasts as a prominent example of fungi known from cultures. But viable type material is important not only for yeasts, but also for other cultivable Fungi that are characterized by particular morphological structures (a specific type of spores), growth properties, and secondary metabolites. We summarize potential proposals which, in our opinion, will improve the stability of fungal names, in particular by protecting those names for which the reference material can be traced back to the original isolate.
    • Nonocarbolines A-E, -Carboline Antibiotics Produced by the Rare Actinobacterium sp. from Indonesia.

      Primahana, Gian; Risdian, Chandra; Mozef, Tjandrawati; Sudarman, Enge; Köck, Matthias; Wink, Joachim; Stadler, Marc; HZI,Helmholtz-Zentrum für Infektionsforschung GmbH, Inhoffenstr. 7,38124 Braunschweig, Germany. (MDPI, 2020-03-17)
      During the course of our ongoing screening for novel biologically active secondary metabolites, the rare Actinobacterium, Nonomuraea sp. 1808210CR was found to produce five unprecedented β-carboline derivatives, nonocarbolines A-E (1-5). Their structures were elucidated from high-resolution mass spectrometry, 1D and 2D nuclear magnetic resonance spectroscopy, and the absolute configuration of 4 was determined by using the modified Mosher method. Nonocarboline B (2) displayed moderate antifungal activity against Mucor hiemalis, while nonocarboline D (4) exhibited significant cytotoxic activity against the human lung carcinoma cell line A-549 with the IC50 value of 1.7 µM.
    • Novel and interesting Ophiocordyceps spp. ( Ophiocordycipitaceae , Hypocreales ) with superficial perithecia from Thailand

      Luangsa-ard, J.; Tasanathai, K.; Thanakitpipattana, D.; Khonsanit, A.; Stadler, Marc; Helmholtz-Zentrum für Infektionsforschung GmbH, Inhoffenstr. 7, 38124 Braunschweig, Germany. (2018-03)
    • A novel species and a new combination of Daldinia from Ban Hua Thung community forest in the northern part of Thailand

      Wongkanoun, Sarunyou; Wendt, Lucile; Stadler, Marc; Luangsa-ard, Jennifer; Srikitikulchai, Prasert; HZI,Helmholtz-Zentrum für Infektionsforschung GmbH, Inhoffenstr. 7,38124 Braunschweig, Germany. (Springer, 2019-04-02)
      During a survey of Xylariales in northern Thailand, several specimens with affinities to the genus Daldinia were found and examined for morphological characters, secondary metabolites, and molecular phylogenetic traits. Aside from morphological and chemotaxonomic studies, a multi-locus phylogenetic analysis using internal transcribed spacers regions (ITS) and the large subunit (LSU) of the ribosomal DNA, the second largest subunit of the RNA polymerase (RPB2), and beta-tubulin (TUB2) genes was performed. Among the specimens was a new species and a new record of a species that had previously never been sequenced and studied for its anamorphic morphology. This species, previously described by Ju and Rogers as Hypoxylon kretzschmarioides based on a single record from Indonesia, showed secondary metabolite profiles reminiscent of those of the genus Daldinia and even clustered in the latter genus in the phylogenetic tree. Therefore, it is transferred to Daldinia as D. kretzschmarioides comb. nov. A second new species, D. subvernicosa sp. nov., was found to have a close relationship with D. vernicosa based on morphological and molecular evidence, but differs from D. vernicosa by long-stipitate asci with mostly subglobose ascospores, and the basal ascospores are often elongated.
    • The nuclear export inhibitor aminoratjadone is a potent effector in extracellular-targeted drug conjugates.

      Klahn, Philipp; Fetz, Verena; Ritter, Antje; Collisi, Wera; Hinkelmann, Bettina; Arnold, Tatjana; Tegge, Werner; Rox, Katharina; Hüttel, Stephan; Mohr, Kathrin I; et al. (Royal Society of Chemistry, 2019-05-28)
      The concept of targeted drug conjugates has been successfully translated to clinical practice in oncology. Whereas the majority of cytotoxic effectors in drug conjugates are directed against either DNA or tubulin, our study aimed to validate nuclear export inhibition as a novel effector principle in drug conjugates. For this purpose, a semisynthetic route starting from the natural product ratjadone A, a potent nuclear export inhibitor, has been developed. The biological evaluation of ratjadones functionalized at the 16-position revealed that oxo- and amino-analogues had very high potencies against cancer cell lines (e.g. 16R-aminoratjadone 16 with IC50 = 260 pM against MCF-7 cells, or 19-oxoratjadone 14 with IC50 = 100 pM against A-549 cells). Mechanistically, the conjugates retained a nuclear export inhibitory activity through binding CRM1. To demonstrate a proof-of-principle for cellular targeting, folate- and luteinizing hormone releasing hormone (LHRH)-based carrier molecules were synthesized and coupled to aminoratjadones as well as fluorescein for cellular efficacy and imaging studies, respectively. The Trojan-Horse conjugates selectively addressed receptor-positive cell lines and were highly potent inhibitors of their proliferation. For example, the folate conjugate FA-7-Val-Cit-pABA-16R-aminoratjadone had an IC50 of 34.3 nM, and the LHRH conjugate d-Orn-Gose-Val-Cit-pABA-16R-aminoratjadone had an IC50 of 12.8 nM. The results demonstrate that nuclear export inhibition is a promising mode-of-action for extracellular-targeted drug conjugate payloads.
    • Observations on Texas hypoxylons, including two new Hypoxylon species and widespread environmental isolates of the H. croceum complex identified by a polyphasic approach

      Sir, Esteban B.; Becker, Kevin; Lambert, Christopher; Bills, Gerald F.; Kuhnert, Eric; HZI,Helmholtz-Zentrum für Infektionsforschung GmbH, Inhoffenstr. 7,38124 Braunschweig, Germany. (Taylor & Francis, 2019-01-01)
    • Occasional comment: Fungal identification to species-level can be challenging.

      Raja, Huzefa A; Oberlies, Nicholas H; Stadler, Marc; HZI,Helmholtz-Zentrum für Infektionsforschung GmbH, Inhoffenstr. 7,38124 Braunschweig, Germany. (Elsevier, 2021-07-14)
      [No abstract available]
    • One stop shop IV: taxonomic update with molecular phylogeny for important phytopathogenic genera: 76–100 (2020)

      Jayawardena, Ruvishika S.; Hyde, Kevin D.; Chen, Yi Jyun; Papp, Viktor; Palla, Balázs; Papp, Dávid; Bhunjun, Chitrabhanu S.; Hurdeal, Vedprakash G.; Senwanna, Chanokned; Manawasinghe, Ishara S.; et al. (Springer Science and Business Media LLC, 2020-09-24)
      This is a continuation of a series focused on providing a stable platform for the taxonomy of phytopathogenic fungi and fungus-like organisms. This paper focuses on one family: Erysiphaceae and 24 phytopathogenic genera: Armillaria, Barriopsis, Cercospora, Cladosporium, Clinoconidium, Colletotrichum, Cylindrocladiella, Dothidotthia,, Fomitopsis, Ganoderma, Golovinomyces, Heterobasidium, Meliola, Mucor, Neoerysiphe, Nothophoma, Phellinus, Phytophthora, Pseudoseptoria, Pythium, Rhizopus, Stemphylium, Thyrostroma and Wojnowiciella. Each genus is provided with a taxonomic background, distribution, hosts, disease symptoms, and updated backbone trees. Species confirmed with pathogenicity studies are denoted when data are available. Six of the genera are updated from previous entries as many new species have been described.
    • Opening and closing of the bacterial RNA polymerase clamp.

      Chakraborty, Anirban; Wang, Dongye; Ebright, Yon W; Korlann, You; Kortkhonjia, Ekaterine; Kim, Taiho; Chowdhury, Saikat; Wigneshweraraj, Sivaramesh; Irschik, Herbert; Jansen, Rolf; et al. (2012-08-03)
      Using single-molecule fluorescence resonance energy transfer, we have defined bacterial RNA polymerase (RNAP) clamp conformation at each step in transcription initiation and elongation. We find that the clamp predominantly is open in free RNAP and early intermediates in transcription initiation but closes upon formation of a catalytically competent transcription initiation complex and remains closed during initial transcription and transcription elongation. We show that four RNAP inhibitors interfere with clamp opening. We propose that clamp opening allows DNA to be loaded into and unwound in the RNAP active-center cleft, that DNA loading and unwinding trigger clamp closure, and that clamp closure accounts for the high stability of initiation complexes and the high stability and processivity of elongation complexes.
    • Ophiocordyceps flavida sp. nov. (Ophiocordycipitaceae), a new species from Thailand associated with Pseudogibellula formicarum (Cordycipitaceae), and their bioactive secondary metabolites

      Mongkolsamrit, Suchada; Noisripoom, Wasana; Pumiputikul, Siraphop; Boonlarppradab, Chollaratt; Samson, Robert A.; Stadler, Marc; Becker, Kevin; Luangsa-Ard, Janet Jennifer; HZI,Helmholtz-Zentrum für Infektionsforschung GmbH, Inhoffenstr. 7,38124 Braunschweig, Germany. (Springer Nature, 2021-04-01)
      During a diversity study of entomopathogenic fungi in an agricultural ecosystem, two fungi were collected, isolated, and identified based on molecular phylogenetic analyses of three nuclear loci (LSU, TEF1, and RPB1) combined with morphological data. In this study, one novel species is described, Ophiocordyceps flavida, and a new record of Pseudogibellula formicarum for Thailand. Ophiocordyceps flavida morphologically resembles the Hirsutella anamorph of Ophiocordyceps pruinosa by having a mononematous character of the conidiophores and the same insect host (Hemiptera: Cicadellidae). Pseudogibellula formicarum is found to occur simultaneously with O. flavida, producing white conidiophores on the host. Additionally, secondary metabolites of both fungi were investigated and the major compound in O. flavida was identified as 2-[2-(4-chlorophenyl)ethyl]-2-(1,1-dimethylethyl)-oxirane. Pseudogibellula formicarum from Ghana and Thailand produces 6-methoxy-1H-indole-3-carbonitrile as a main component. These compounds are known from chemical synthesis or as products of biotransformation, respectively. However, they were obtained in our study as genuine fungal metabolites for the first time and may even constitute chemotaxonomic markers for the respective species
    • Optimization of the biotechnological production of a novel class of anti-MRSA antibiotics from Chitinophaga sancti.

      Beckmann, Amelie; Hüttel, Stephan; Schmitt, Viktoria; Müller, Rolf; Stadler, Marc; Helmholtz-Zentrum für Infektionsforschung GmbH, Inhoffenstr. 7, 38124 Braunschweig, Germany. (2017-08-17)
      Recently, the discovery of the elansolids, a group of macrolides, was reported. The molecules show activity against methicillin-resistant Staphylococcus aureus as well as other gram-positive organisms. This fact renders those substances a promising starting point for future chemical development. The active atropisomers A1/A2 are formed by macrolactonization of the biosynthesis product A3 but are prone to ring opening and subsequent formation of several unwanted side products. Recently it could be shown that addition of different nucleophiles to culture extracts of Chitinophaga sancti enable the formation of new stable elansolid derivatives. Furthermore, addition of such a nucleophile directly into the culture led exclusively to formation of a single active elansolid derivative. Due to low product yields, methods for production of gram amounts of these molecules have to be established to enable further development of this promising compound class.
    • Pentacyclic Triterpenoids, Phytosteroids and Fatty Acid Isolated from the Stem-bark of Cola lateritia K. Schum. (Sterculiaceae) of Cameroon origin; Evaluation of Their Antibacterial Activity

      Kamdem, Michael H.K.; Ojo, Olusesan; Kemkuignou, Blondelle M.; Talla, Rostan M.; Fonkui, Thierry Y.; Silihe, Kevine K.; Tata, Charlotte M.; Fotsing, Marthe C.D.; Mmutlane, Edwin M.; Ndinteh, Derek T. (Elsevier, 2022-01-01)
      The phytochemical investigation on the chemical constituents of dichloromethane-methanol (1:1) stem-bark extract ofCola lateritiaK. Schum. (Sterculiaceae) led to the isolationand characterization of five pentacyclic triterpenoids, one fatty acid and two phytosteroids. Thecompounds were identified as heptadecanoic acid (1), maslinic acid (2), betulinic acid (3), lupenone(4), lupeol (5), friedelin (6),b-stigmasterol (7) andß-sitosterol-3-O-ß-D-glucoside (8). Their struc-tures were determined by NMR analysis (1H,13C, DEPT-135, COSY, HMBC and HSQC), high-resolution mass spectrometry (HR-ESI-MS) and comparisons with published data in the literature.This work, to the best of our knowledge, is the first isolation and identification of these compoundsin pure forms fromCola lateritia. Also, compounds1–3are reported for the first time fromColagenus.In vitroantibacterial activity of the isolated compounds (1–8) and the crude extract wereevaluated againstBacillus subtilis,Staphylococcus epidermidis,Enterococcus faecalis,Mycobacterium smegmatis,Staphylococcus aureus,Enterobacter cloacae,Klebsiella oxytoca,Proteusvulgaris,Klebsiella pneumonia,Escherichia coli, Proteus mirabilisandKlebsiella aerogeneswithstreptomycin, nalidixic acid and ampicillin as standard antibacterial drugs. Compound2was activeagainstE. faecalis(MIC = 18.5mg/mL), and it was 6.9 and 28 times lower and active than that ofstreptomycin (MIC 128mg/mL) and nalidixic acid (MIC>512mg/mL) respectively. All the isolatedcompounds and crude extract showed significant activities against the tested bacterial strains.