A polymorphism within the internal fusion loop of the Ebola virus glycoprotein modulates host cell entry.
Average rating
Cast your vote
You can rate an item by clicking the amount of stars they wish to award to this item.
When enough users have cast their vote on this item, the average rating will also be shown.
Star rating
Your vote was cast
Thank you for your feedback
Thank you for your feedback
Authors
Hoffmann, MarkusCrone, Lisa
Dietzel, Erik
Paijo, Jennifer
González-Hernández, Mariana
Nehlmeier, Inga
Kalinke, Ulrich
Becker, Stephan
Pöhlmann, Stefan
Issue Date
2017-02-22
Metadata
Show full item recordAbstract
The large scale of the Ebola virus disease (EVD) outbreak in West Africa in 2013-2016 raised the question whether the host cell interactions of the responsible Ebola virus (EBOV) strain differed from those of other ebolaviruses. We previously reported that the glycoprotein (GP) of the virus circulating in West Africa in 2014 (EBOV2014) exhibited reduced ability to mediate entry into two non-human primate (NHP)-derived cell lines relative to the GP of EBOV1976. Here, we investigated the molecular determinants underlying the differential entry efficiency. We found that EBOV2014-GP-driven entry into diverse NHP-derived cell lines as well as human monocyte-derived macrophages and dendritic cells was reduced as compared to EBOV1976-GP, although entry into most human- and all bat-derived cell lines tested was comparable. Moreover, EBOV2014 replication in NHP but not human cells was diminished relative to EBOV1976, suggesting that reduced cell entry translated into reduced viral spread. Mutagenic analysis of EBOV2014-GP and EBOV1976-GP revealed that an amino acid polymorphism in the receptor-binding domain, A82V, modulated entry efficiency in a cell line-independent manner and did not account for the reduced EBOV2014-GP-driven entry into NHP cells. In contrast, polymorphism T544I, located in the internal fusion loop in the GP2 subunit, was found to be responsible for the entry phenotype. These results suggest that position 544 is an important determinant of EBOV infectivity for NHP- and certain human target cells.IMPORTANCE The Ebola virus disease outbreak in West Africa in 2013 entailed more than 10,000 deaths. The scale of the outbreak and its dramatic impact on human health raised the question whether the responsible virus was particularly adept at infecting human cells. Our study shows that an amino acid exchange, A82V, that the virus acquired during the epidemic and that was not observed in previously circulating viruses, increases viral entry into diverse target cells. In contrast, the epidemic virus showed a reduced ability to enter cells of non-human primates as compared to the virus circulating in 1976 and a single amino acid exchange in the internal fusion loop of the viral glycoprotein was found to account for this phenotype.Citation
A polymorphism within the internal fusion loop of the Ebola virus glycoprotein modulates host cell entry. 2017 J. Virol.Affiliation
Twincore Centre of Experimental and Clinical Infection Research; a joint venture between the Hannover Medical School and the Helmholtz Centre for Infection Research, Hannover 30625, Germany.Journal
Journal of virologyPubMed ID
28228590Type
ArticleLanguage
enISSN
1098-5514ae974a485f413a2113503eed53cd6c53
10.1128/JVI.00177-17
Scopus Count
The following license files are associated with this item:
- Creative Commons
Except where otherwise noted, this item's license is described as http://creativecommons.org/licenses/by-nc-sa/4.0/
Related articles
- A Glycoprotein Mutation That Emerged during the 2013-2016 Ebola Virus Epidemic Alters Proteolysis and Accelerates Membrane Fusion.
- Authors: Fels JM, Bortz RH 3rd, Alkutkar T, Mittler E, Jangra RK, Spence JS, Chandran K
- Issue date: 2021 Feb 16
- Spontaneous Mutation at Amino Acid 544 of the Ebola Virus Glycoprotein Potentiates Virus Entry and Selection in Tissue Culture.
- Authors: Ruedas JB, Ladner JT, Ettinger CR, Gummuluru S, Palacios G, Connor JH
- Issue date: 2017 Aug 1
- Functional Characterization of Adaptive Mutations during the West African Ebola Virus Outbreak.
- Authors: Dietzel E, Schudt G, Krähling V, Matrosovich M, Becker S
- Issue date: 2017 Jan 15
- Shedding of Ebola Virus Surface Glycoprotein Is a Mechanism of Self-regulation of Cellular Cytotoxicity and Has a Direct Effect on Virus Infectivity.
- Authors: Dolnik O, Volchkova VA, Escudero-Perez B, Lawrence P, Klenk HD, Volchkov VE
- Issue date: 2015 Oct 1
- Ebola Virus Glycoprotein with Increased Infectivity Dominated the 2013-2016 Epidemic.
- Authors: Diehl WE, Lin AE, Grubaugh ND, Carvalho LM, Kim K, Kyawe PP, McCauley SM, Donnard E, Kucukural A, McDonel P, Schaffner SF, Garber M, Rambaut A, Andersen KG, Sabeti PC, Luban J
- Issue date: 2016 Nov 3