• Login
    View Item 
    •   Home
    • Department of Cell Biology (ZBIO)
    • publications of the department Central Unit of Microscopy [ZEIM]
    • View Item
    •   Home
    • Department of Cell Biology (ZBIO)
    • publications of the department Central Unit of Microscopy [ZEIM]
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of HZICommunitiesTitleAuthorsIssue DateSubmit DateSubjectsJournalTypesSubject (MeSH)This CollectionTitleAuthorsIssue DateSubmit DateSubjectsJournalTypesSubject (MeSH)

    My Account

    LoginRegister

    Local Links

    About: PolicyHelmholtz-Zentrum für Infektionsforschung HomepageHZI-Library HomepageContact usOpen AccessPublishing ApproachGetting StartedEditing ProfileBrowsing OptionsUsing SearchSubmitting ContentLicenced Journals & access details here

    Statistics

    Display statistics

    The signaling pathway of Campylobacter jejuni-induced Cdc42 activation: Role of fibronectin, integrin beta1, tyrosine kinases and guanine exchange factor Vav2

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    12964_2011_Article_248.pdf
    Size:
    664.5Kb
    Format:
    PDF
    Download
    Average rating
     
       votes
    Cast your vote
    You can rate an item by clicking the amount of stars they wish to award to this item. When enough users have cast their vote on this item, the average rating will also be shown.
    Star rating
     
    Your vote was cast
    Thank you for your feedback
    Authors
    Krause-Gruszczynska, Malgorzata
    Boehm, Manja
    Rohde, Manfred
    Tegtmeyer, Nicole
    Takahashi, Seiichiro
    Buday, Laszlo
    Oyarzabal, Omar A
    Backert, Steffen
    Issue Date
    2011-12-28
    
    Metadata
    Show full item record
    Abstract
    Abstract Background Host cell invasion by the foodborne pathogen Campylobacter jejuni is considered as one of the primary reasons of gut tissue damage, however, mechanisms and key factors involved in this process are widely unclear. It was reported that small Rho GTPases, including Cdc42, are activated and play a role during invasion, but the involved signaling cascades remained unknown. Here we utilised knockout cell lines derived from fibronectin-/-, integrin-beta1-/-, focal adhesion kinase (FAK)-/- and Src/Yes/Fyn-/- deficient mice, and wild-type control cells, to investigate C. jejuni-induced mechanisms leading to Cdc42 activation and bacterial uptake. Results Using high-resolution scanning electron microscopy, GTPase pulldowns, G-Lisa and gentamicin protection assays we found that each studied host factor is necessary for induction of Cdc42-GTP and efficient invasion. Interestingly, filopodia formation and associated membrane dynamics linked to invasion were only seen during infection of wild-type but not in knockout cells. Infection of cells stably expressing integrin-beta1 variants with well-known defects in fibronectin fibril formation or FAK signaling also exhibited severe deficiencies in Cdc42 activation and bacterial invasion. We further demonstrated that infection of wild-type cells induces increasing amounts of phosphorylated FAK and growth factor receptors (EGFR and PDGFR) during the course of infection, correlating with accumulating Cdc42-GTP levels and C. jejuni invasion over time. In studies using pharmacological inhibitors, silencing RNA (siRNA) and dominant-negative expression constructs, EGFR, PDGFR and PI3-kinase appeared to represent other crucial components upstream of Cdc42 and invasion. siRNA and the use of Vav1/2-/- knockout cells further showed that the guanine exchange factor Vav2 is required for Cdc42 activation and maximal bacterial invasion. Overexpression of certain mutant constructs indicated that Vav2 is a linker molecule between Cdc42 and activated EGFR/PDGFR/PI3-kinase. Using C. jejuni mutant strains we further demonstrated that the fibronectin-binding protein CadF and intact flagella are involved in Cdc42-GTP induction, indicating that the bacteria may directly target the fibronectin/integrin complex for inducing signaling leading to its host cell entry. Conclusion Collectively, our findings led us propose that C. jejuni infection triggers a novel fibronectin→integrin-beta1→FAK/Src→EGFR/PDGFR→PI3-kinase→Vav2 signaling cascade, which plays a crucial role for Cdc42 GTPase activity associated with filopodia formation and enhances bacterial invasion.
    Citation
    Cell Communication and Signaling. 2011 Dec 28;9(1):32
    URI
    http://dx.doi.org/10.1186/1478-811X-9-32
    http://hdl.handle.net/10033/620957
    Type
    Journal Article
    Collections
    publications of the department Central Unit of Microscopy [ZEIM]

    entitlement

     

    DSpace software copyright © 2002-2023  DuraSpace
    Quick Guide | Kontakt | Feedback abschicken
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.