An oral multispecies biofilm model for high content screening applications.
Name:
Kommerein_supp tables 1-3.pdf
Size:
190.2Kb
Format:
PDF
Description:
supplemental tables 1 to 3
Average rating
Cast your vote
You can rate an item by clicking the amount of stars they wish to award to this item.
When enough users have cast their vote on this item, the average rating will also be shown.
Star rating
Your vote was cast
Thank you for your feedback
Thank you for your feedback
Authors
Kommerein, NadineStumpp, Sascha N
Müsken, Mathias
Ehlert, Nina
Winkel, Andreas
Häussler, Susanne
Behrens, Peter
Buettner, Falk F R
Stiesch, Meike
Issue Date
2017
Metadata
Show full item recordAbstract
Peri-implantitis caused by multispecies biofilms is a major complication in dental implant treatment. The bacterial infection surrounding dental implants can lead to bone loss and, in turn, to implant failure. A promising strategy to prevent these common complications is the development of implant surfaces that inhibit biofilm development. A reproducible and easy-to-use biofilm model as a test system for large scale screening of new implant surfaces with putative antibacterial potency is therefore of major importance. In the present study, we developed a highly reproducible in vitro four-species biofilm model consisting of the highly relevant oral bacterial species Streptococcus oralis, Actinomyces naeslundii, Veillonella dispar and Porphyromonas gingivalis. The application of live/dead staining, quantitative real time PCR (qRT-PCR), scanning electron microscopy (SEM) and urea-NaCl fluorescence in situ hybridization (urea-NaCl-FISH) revealed that the four-species biofilm community is robust in terms of biovolume, live/dead distribution and individual species distribution over time. The biofilm community is dominated by S. oralis, followed by V. dispar, A. naeslundii and P. gingivalis. The percentage distribution in this model closely reflects the situation in early native plaques and is therefore well suited as an in vitro model test system. Furthermore, despite its nearly native composition, the multispecies model does not depend on nutrient additives, such as native human saliva or serum, and is an inexpensive, easy to handle and highly reproducible alternative to the available model systems. The 96-well plate format enables high content screening for optimized implant surfaces impeding biofilm formation or the testing of multiple antimicrobial treatment strategies to fight multispecies biofilm infections, both exemplary proven in the manuscript.Citation
An oral multispecies biofilm model for high content screening applications. 2017, 12 (3):e0173973 PLoS ONEAffiliation
Helmholtz Centre for infection research, Inhoffenstr.7, 38124 Braunschweig, Germany.Journal
PloS onePubMed ID
28296966Type
ArticleLanguage
enISSN
1932-6203ae974a485f413a2113503eed53cd6c53
10.1371/journal.pone.0173973
Scopus Count
The following license files are associated with this item:
- Creative Commons
Except where otherwise noted, this item's license is described as http://creativecommons.org/licenses/by-nc-sa/4.0/
Related articles
- Development and characterization of an oral multispecies biofilm implant flow chamber model.
- Authors: Kommerein N, Doll K, Stumpp NS, Stiesch M
- Issue date: 2018
- Characterization and application of a flow system for in vitro multispecies oral biofilm formation.
- Authors: Blanc V, Isabal S, Sánchez MC, Llama-Palacios A, Herrera D, Sanz M, León R
- Issue date: 2014 Jun
- Topographic characterization of multispecies biofilms growing on dental implant surfaces: An in vitro model.
- Authors: Bermejo P, Sánchez MC, Llama-Palacios A, Figuero E, Herrera D, Sanz M
- Issue date: 2019 Mar
- An in vitro biofilm model associated to dental implants: structural and quantitative analysis of in vitro biofilm formation on different dental implant surfaces.
- Authors: Sánchez MC, Llama-Palacios A, Fernández E, Figuero E, Marín MJ, León R, Blanc V, Herrera D, Sanz M
- Issue date: 2014 Oct
- Plant-based oral care product exhibits antibacterial effects on different stages of oral multispecies biofilm development in vitro.
- Authors: Kommerein N, Weigel AJ, Stiesch M, Doll K
- Issue date: 2021 Apr 1