• Optical Tweezers to Study RNA-Protein Interactions in Translation Regulation

      Pekarek, Lukas; Buck, Stefan; Caliskan, Neva; Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz Zentrum für Infektionsforschung (Helmholtz Centre for Infection Research), Germany (JOVE, 2022-02-12)
      RNA adopts diverse structural folds, which are essential for its functions and thereby can impact diverse processes in the cell. In addition, the structure and function of an RNA can be modulated by various trans-acting factors, such as proteins, metabolites or other RNAs. Frameshifting RNA molecules, for instance, are regulatory RNAs located in coding regions, which direct translating ribosomes into an alternative open reading frame, and thereby act as gene switches. They may also adopt different folds after binding to proteins or other trans-factors. To dissect the role of RNA-binding proteins in translation and how they modulate RNA structure and stability, it is crucial to study the interplay and mechanical features of these RNA-protein complexes simultaneously. This work illustrates how to employ single-molecule-fluorescence-coupled optical tweezers to explore the conformational and thermodynamic landscape of RNA-protein complexes at a high resolution. As an example, the interaction of the SARS-CoV-2 programmed ribosomal frameshifting element with the trans-acting factor short isoform of zinc-finger antiviral protein is elaborated. In addition, fluorescence-labeled ribosomes were monitored using the confocal unit, which would ultimately enable the study of translation elongation. The fluorescence coupled OT assay can be widely applied to explore diverse RNA-protein complexes or trans-acting factors regulating translation and could facilitate studies of RNA-based gene regulation.
    • Structural and molecular basis for Cardiovirus 2A protein as a viral gene expression switch.

      Hill, Chris H; Pekarek, Lukas; Napthine, Sawsan; Kibe, Anuja; Firth, Andrew E; Graham, Stephen C; Caliskan, Neva; Brierley, Ian; HIRI, Helmholtz-Institut für RNA-basierte Infektionsforschung, Josef-Shneider Strasse 2, 97080 Würzburg, Germany. (Nature Publishing Group (NPG), 2021-12-09)
      rogrammed -1 ribosomal frameshifting (PRF) in cardioviruses is activated by the 2A protein, a multi-functional virulence factor that also inhibits cap-dependent translational initiation. Here we present the X-ray crystal structure of 2A and show that it selectively binds to a pseudoknot-like conformation of the PRF stimulatory RNA element in the viral genome. Using optical tweezers, we demonstrate that 2A stabilises this RNA element, likely explaining the increase in PRF efficiency in the presence of 2A. Next, we demonstrate a strong interaction between 2A and the small ribosomal subunit and present a cryo-EM structure of 2A bound to initiated 70S ribosomes. Multiple copies of 2A bind to the 16S rRNA where they may compete for binding with initiation and elongation factors. Together, these results define the structural basis for RNA recognition by 2A, show how 2A-mediated stabilisation of an RNA pseudoknot promotes PRF, and reveal how 2A accumulation may shut down translation during virus infection. © 2021. The Au