• Bacterial Adaptation to the Host's Diet Is a Key Evolutionary Force Shaping Drosophila-Lactobacillus Symbiosis.

      Martino, Maria Elena; Joncour, Pauline; Leenay, Ryan; Gervais, Hugo; Shah, Malay; Hughes, Sandrine; Gillet, Benjamin; Beisel, Chase; Leulier, François; HIRI, Helmholtz-Institut für RNA-basierte Infektionsforschung, Josef-Shneider Strasse 2, 97080 Würzburg, Germany. (Elsevier, 2018-07-11)
      Animal-microbe facultative symbioses play a fundamental role in ecosystem and organismal health. Yet, due to the flexible nature of their association, the selection pressures that act on animals and their facultative symbionts remain elusive. Here we apply experimental evolution to Drosophila melanogaster associated with its growth-promoting symbiont Lactobacillus plantarum, representing a well-established model of facultative symbiosis. We find that the diet of the host, rather than the host itself, is a predominant driving force in the evolution of this symbiosis. Furthermore, we identify a mechanism resulting from the bacterium's adaptation to the diet, which confers growth benefits to the colonized host. Our study reveals that bacterial adaptation to the host's diet may be the foremost step in determining the evolutionary course of a facultative animal-microbe symbiosis.
    • An RNA Surprise in Bacterial Effector Mechanisms

      Gerovac, Milan; Vogel, Jörg; HIRI, Helmholtz-Institut für RNA-basierte Infektionsforschung, Josef-Shneider Strasse 2, 97080 Würzburg, Germany. (Elsevier BV, 2019-12)
      acterial pathogens secrete effector proteins to manipulate host signaling proteins and cellular structures. In this issue of Cell Host & Microbe, Pagliuso et al. (2019) propose an effector mechanism in Listeria monocytogenes whereby an RNA-binding protein associates with bacterial RNA that stimulates RIG-I (retinoic acid inducible gene I)-based innate immunity in the host cytosol.