• The ambivalent role of Bacteroides in enteric infections.

      Bornet, Elise; Westermann, Alexander J; HIRI, Helmholtz-Institut für RNA-basierte Infektionsforschung, Josef-Shneider Strasse 2, 97080 Würzburg, Germany. (Elsevier (Cell Press), 2021-12-07)
      Bacteroides spp. are increasingly used as model gut commensals in cocolonization studies with enteropathogens. The collective findings imply common themes of colonization resistance but also pathogen crossfeeding. We discuss how cutting-edge transcriptomics may help to disentangle the molecular basis of the divergent roles of Bacteroides in either protecting against or promoting infection.
    • Atlas der SARS-CoV-2-RNA-Protein-Interaktionen in infizierten Zellen

      Schmidt, Nora; Munschauer, Mathias; HIRI, Helmholtz-Institut für RNA-basierte Infektionsforschung, Josef-Shneider Strasse 2, 97080 Würzburg, Germany. (Springer, 2021-06-26)
      Using RNA antisense purification and mass spectrometry, we identified more than 100 human proteins that directly and specifically bind SARS-CoV-2 RNA in infected cells. To gain insights into the functions of selected RNA interactors, we applied genetic perturbation and pharmacological inhibition experiments, and mapped the contact sites on the viral RNA. This led to the identification of host dependency factors and defense strategies, which can guide the design of novel therapeutics against SARS-CoV-2.
    • CRISPR technologies and the search for the PAM-free nuclease.

      Collias, Daphne; Beisel, Chase L; HIRI, Helmholtz-Institut für RNA-basierte Infektionsforschung, Josef-Shneider Strasse 2, 97080 Würzburg, Germany. (Nature Pulishing Group, 2021-01-22)
      The ever-expanding set of CRISPR technologies and their programmable RNA-guided nucleases exhibit remarkable flexibility in DNA targeting. However, this flexibility comes with an ever-present constraint: the requirement for a protospacer adjacent motif (PAM) flanking each target. While PAMs play an essential role in self/nonself discrimination by CRISPR-Cas immune systems, this constraint has launched a far-reaching expedition for nucleases with relaxed PAM requirements. Here, we review ongoing efforts toward realizing PAM-free nucleases through natural ortholog mining and protein engineering. We also address potential consequences of fully eliminating PAM recognition and instead propose an alternative nuclease repertoire covering all possible PAM sequences.
    • Cross-species RNA-seq for deciphering host-microbe interactions.

      Westermann, Alexander J; Vogel, Jörg; HIRI, Helmholtz-Institut für RNA-basierte Infektionsforschung, Josef-Shneider Strasse 2, 97080 Würzburg, Germany. (Nature research, 2021-02-17)
      The human body is constantly exposed to microorganisms, which entails manifold interactions between human cells and diverse commensal or pathogenic bacteria. The cellular states of the interacting cells are decisive for the outcome of these encounters such as whether bacterial virulence programmes and host defence or tolerance mechanisms are induced. This Review summarizes how next-generation RNA sequencing (RNA-seq) has become a primary technology to study host-microbe interactions with high resolution, improving our understanding of the physiological consequences and the mechanisms at play. We illustrate how the discriminatory power and sensitivity of RNA-seq helps to dissect increasingly complex cellular interactions in time and space down to the single-cell level. We also outline how future transcriptomics may answer currently open questions in host-microbe interactions and inform treatment schemes for microbial disorders.
    • A decade of advances in transposon-insertion sequencing.

      Cain, Amy K; Barquist, Lars; Goodman, Andrew L; Paulsen, Ian T; Parkhill, Julian; van Opijnen, Tim; HIRI, Helmholtz-Institut für RNA-basierte Infektionsforschung, Josef-Shneider Strasse 2, 97080 Würzburg, Germany. (Springer Nature, 2020-06-12)
      It has been 10 years since the introduction of modern transposon-insertion sequencing (TIS) methods, which combine genome-wide transposon mutagenesis with high-throughput sequencing to estimate the fitness contribution or essentiality of each genetic component in a bacterial genome. Four TIS variations were published in 2009: transposon sequencing (Tn-Seq), transposon-directed insertion site sequencing (TraDIS), insertion sequencing (INSeq) and high-throughput insertion tracking by deep sequencing (HITS). TIS has since become an important tool for molecular microbiologists, being one of the few genome-wide techniques that directly links phenotype to genotype and ultimately can assign gene function. In this Review, we discuss the recent applications of TIS to answer overarching biological questions. We explore emerging and multidisciplinary methods that build on TIS, with an eye towards future applications.
    • An RNA biology perspective on species-specific programmable RNA antibiotics.

      Vogel, Jörg; HIRI, Helmholtz-Institut für RNA-basierte Infektionsforschung, Josef-Shneider Strasse 2, 97080 Würzburg, Germany. (Wiley, 2020-03-17)
      Our body is colonized by a vast array of bacteria the sum of which forms our microbiota. The gut alone harbors >1,000 bacterial species. An understanding of their individual or synergistic contributions to human health and disease demands means to interfere with their functions on the species level. Most of the currently available antibiotics are broad-spectrum, thus too unspecific for a selective depletion of a single species of interest from the microbiota. Programmable RNA antibiotics in the form of short antisense oligonucleotides (ASOs) promise to achieve precision manipulation of bacterial communities. These ASOs are coupled to small peptides that carry them inside the bacteria to silence mRNAs of essential genes, for example, to target antibiotic-resistant pathogens as an alternative to standard antibiotics. There is already proof-of-principle with diverse bacteria, but many open questions remain with respect to true species specificity, potential off-targeting, choice of peptides for delivery, bacterial resistance mechanisms and the host response. While there is unlikely a one-fits-all solution for all microbiome species, I will discuss how recent progress in bacterial RNA biology may help to accelerate the development of programmable RNA antibiotics for microbiome editing and other applications.
    • The World of Stable Ribonucleoproteins and Its Mapping With Grad-Seq and Related Approaches.

      Gerovac, Milan; Vogel, Jörg; Smirnov, Alexandre; HIRI, Helmholtz-Institut für RNA-basierte Infektionsforschung, Josef-Shneider Strasse 2, 97080 Würzburg, Germany. (Frontiers, 2021-04-07)
      Macromolecular complexes of proteins and RNAs are essential building blocks of cells. These stable supramolecular particles can be viewed as minimal biochemical units whose structural organization, i.e., the way the RNA and the protein interact with each other, is directly linked to their biological function. Whether those are dynamic regulatory ribonucleoproteins (RNPs) or integrated molecular machines involved in gene expression, the comprehensive knowledge of these units is critical to our understanding of key molecular mechanisms and cell physiology phenomena. Such is the goal of diverse complexomic approaches and in particular of the recently developed gradient profiling by sequencing (Grad-seq). By separating cellular protein and RNA complexes on a density gradient and quantifying their distributions genome-wide by mass spectrometry and deep sequencing, Grad-seq charts global landscapes of native macromolecular assemblies. In this review, we propose a function-based ontology of stable RNPs and discuss how Grad-seq and related approaches transformed our perspective of bacterial and eukaryotic ribonucleoproteins by guiding the discovery of new RNA-binding proteins and unusual classes of noncoding RNAs. We highlight some methodological aspects and developments that permit to further boost the power of this technique and to look for exciting new biology in understudied and challenging biological models.