• Thermodynamic control of -1 programmed ribosomal frameshifting.

      Bock, Lars V; Caliskan, Neva; Korniy, Natalia; Peske, Frank; Rodnina, Marina V; Grubmüller, Helmut; HIRI, Helmholtz-Institut für RNA-basierte Infektionsforschung, Josef-Shneider Strasse 2, 97080 Würzburg, Germany. (Nature Research, 2019-10-10)
      mRNA contexts containing a 'slippery' sequence and a downstream secondary structure element stall the progression of the ribosome along the mRNA and induce its movement into the -1 reading frame. In this study we build a thermodynamic model based on Bayesian statistics to explain how -1 programmed ribosome frameshifting can work. As training sets for the model, we measured frameshifting efficiencies on 64 dnaX mRNA sequence variants in vitro and also used 21 published in vivo efficiencies. With the obtained free-energy difference between mRNA-tRNA base pairs in the 0 and -1 frames, the frameshifting efficiency of a given sequence can be reproduced and predicted from the tRNA-mRNA base pairing in the two frames. Our results further explain how modifications in the tRNA anticodon modulate frameshifting and show how the ribosome tunes the strength of the base-pair interactions.
    • Time-Resolved scRNA-Seq Tracks the Adaptation of a Sensitive MCL Cell Line to Ibrutinib Treatment.

      Fuhr, Viktoria; Vafadarnejad, Ehsan; Dietrich, Oliver; Arampatzi, Panagiota; Riedel, Angela; Saliba, Antoine-Emmanuel; Rosenwald, Andreas; Rauert-Wunderlich, Hilka; HIRI, Helmholtz-Institut für RNA-basierte Infektionsforschung, Josef-Shneider Strasse 2, 97080 Würzburg, Germany. (MDPI, 2021-02-25)
      Since the approval of ibrutinib for relapsed/refractory mantle cell lymphoma (MCL), the treatment of this rare mature B-cell neoplasm has taken a great leap forward. Despite promising efficacy of the Bruton tyrosine kinase inhibitor, resistance arises inevitably and the underlying mechanisms remain to be elucidated. Here, we aimed to decipher the response of a sensitive MCL cell line treated with ibrutinib using time-resolved single-cell RNA sequencing. The analysis uncovered five subpopulations and their individual responses to the treatment. The effects on the B cell receptor pathway, cell cycle, surface antigen expression, and metabolism were revealed by the computational analysis and were validated by molecular biological methods. The observed upregulation of B cell receptor signaling, crosstalk with the microenvironment, upregulation of CD52, and metabolic reprogramming towards dependence on oxidative phosphorylation favor resistance to ibrutinib treatment. Targeting these cellular responses provide new therapy options in MCL.
    • Trans-Acting Small RNAs and Their Effects on Gene Expression in and Escherichia coli and Salmonella.

      Hör, Jens; Matera, Gianluca; Vogel, Jörg; Gottesman, Susan; Storz, Gisela; HIRI, Helmholtz-Institut für RNA-basierte Infektionsforschung, Josef-Shneider Strasse 2, 97080 Würzburg, Germany. (ASM, 2020-03-20)
      The last few decades have led to an explosion in our understanding of the major roles that small regulatory RNAs (sRNAs) play in regulatory circuits and the responses to stress in many bacterial species. Much of the foundational work was carried out with Escherichia coli and Salmonella enterica serovar Typhimurium. The studies of these organisms provided an overview of how the sRNAs function and their impact on bacterial physiology, serving as a blueprint for sRNA biology in many other prokaryotes. They also led to the development of new technologies. In this chapter, we first summarize how these sRNAs were identified, defining them in the process. We discuss how they are regulated and how they act and provide selected examples of their roles in regulatory circuits and the consequences of this regulation. Throughout, we summarize the methodologies that were developed to identify and study the regulatory RNAs, most of which are applicable to other bacteria. Newly updated databases of the known sRNAs in E. coli K-12 and S. enterica Typhimurium SL1344 serve as a reference point for much of the discussion and, hopefully, as a resource for readers and for future experiments to address open questions raised in this review.
    • Transcriptional noise and exaptation as sources for bacterial sRNAs.

      Jose, Bethany R; Gardner, Paul P; Barquist, Lars; HIRI, Helmholtz-Institut für RNA-basierte Infektionsforschung, Josef-Shneider Strasse 2, 97080 Würzburg, Germany. (Portland Press, 2019-04-30)
      Understanding how new genes originate and integrate into cellular networks is key to understanding evolution. Bacteria present unique opportunities for both the natural history and experimental study of gene origins, due to their large effective population sizes, rapid generation times, and ease of genetic manipulation. Bacterial small non-coding RNAs (sRNAs), in particular, many of which operate through a simple antisense regulatory logic, may serve as tractable models for exploring processes of gene origin and adaptation. Understanding how and on what timescales these regulatory molecules arise has important implications for understanding the evolution of bacterial regulatory networks, in particular, for the design of comparative studies of sRNA function. Here, we introduce relevant concepts from evolutionary biology and review recent work that has begun to shed light on the timescales and processes through which non-functional transcriptional noise is co-opted to provide regulatory functions. We explore possible scenarios for sRNA origin, focusing on the co-option, or exaptation, of existing genomic structures which may provide protected spaces for sRNA evolution.
    • Transcriptome profiling and protease inhibition experiments identify proteases that activate H3N2 influenza A and influenza B viruses in murine airways.

      Harbig, Anne; Mernberger, Marco; Bittel, Linda; Pleschka, Stephan; Schughart, Klaus; Steinmetzer, Torsten; Stiewe, Thorsten; Nist, Andrea; Böttcher-Friebertshäuser, Eva; HIRI, Helmholtz-Institut für RNA-basierte Infektionsforschung, Josef-Shneider Strasse 2, 97080 Würzburg, Germany. (Elsevier, 2020-04-17)
      Cleavage of influenza virus hemagglutinin (HA) by host proteases is essential for virus infectivity. HA of most influenza A and B (IAV/IBV) viruses is cleaved at a monobasic motif by trypsin-like proteases. Previous studies have reported that transmembrane serine protease 2 (TMPRSS2) is essential for activation of H7N9 and H1N1pdm IAV in mice but that H3N2 IAV and IBV activation is independent of TMPRSS2 and carried out by as-yet-undetermined protease(s). Here, to identify additional H3 IAV- and IBV-activating proteases, we used RNA-Seq to investigate the protease repertoire of murine lower airway tissues, primary type II alveolar epithelial cells (AECIIs), and the mouse lung cell line MLE-15. Among 13 candidates identified, TMPRSS4, TMPRSS13, hepsin, and prostasin activated H3 and IBV HA in vitro IBV activation and replication was reduced in AECIIs from Tmprss2/Tmprss4-deficient mice compared with WT or Tmprss2-deficient mice, indicating that murine TMPRSS4 is involved in IBV activation. Multicycle replication of H3N2 IAV and IBV in AECIIs of Tmprss2/Tmprss4-deficient mice varied in sensitivity to protease inhibitors, indicating that different, but overlapping, sets of murine proteases facilitate H3 and IBV HA cleavages. Interestingly, human hepsin and prostasin orthologs did not activate H3, but they did activate IBV HA in vitro Our results indicate that TMPRSS4 is an IBV-activating protease in murine AECIIs and suggest that TMPRSS13, hepsin, and prostasin cleave H3 and IBV HA in mice. They further show that hepsin and prostasin orthologs might contribute to the differences observed in TMPRSS2-independent activation of H3 in murine and human airways.
    • Triple RNA-Seq Reveals Synergy in a Human Virus-Fungus Co-infection Model.

      Seelbinder, Bastian; Wallstabe, Julia; Marischen, Lothar; Weiss, Esther; Wurster, Sebastian; Page, Lukas; Löffler, Claudia; Bussemer, Lydia; Schmitt, Anna-Lena; Wolf, Thomas; et al. (Elsevier (Cell Press), 2020-11-17)
      High-throughput RNA sequencing (RNA-seq) is routinely applied to study diverse biological processes; however, when performed separately on interacting organisms, systemic noise intrinsic to RNA extraction, library preparation, and sequencing hampers the identification of cross-species interaction nodes. Here, we develop triple RNA-seq to simultaneously detect transcriptomes of monocyte-derived dendritic cells (moDCs) infected with the frequently co-occurring pulmonary pathogens Aspergillus fumigatus and human cytomegalovirus (CMV). Comparing expression patterns after co-infection with those after single infections, our data reveal synergistic effects and mutual interferences between host responses to the two pathogens. For example, CMV attenuates the fungus-mediated activation of pro-inflammatory cytokines through NF-κB (nuclear factor κB) and NFAT (nuclear factor of activated T cells) cascades, while A. fumigatus impairs viral clearance by counteracting viral nucleic acid-induced activation of type I interferon signaling. Together, the analytical power of triple RNA-seq proposes molecular hubs in the differential moDC response to fungal/viral single infection or co-infection that contribute to our understanding of the etiology and, potentially, clearance of post-transplant infections.
    • Tunable self-cleaving ribozymes for modulating gene expression in eukaryotic systems.

      Jacobsen, Thomas; Yi, Gloria; Al Asafen, Hadel; Jermusyk, Ashley A; Beisel, Chase L; Reeves, Gregory T; HIRI, Helmholtz-Institut für RNA-basierte Infektionsforschung, Josef-Shneider Strasse 2, 97080 Würzburg, Germany. (PLOS, 2020-04-30)
      Advancements in the field of synthetic biology have been possible due to the development of genetic tools that are able to regulate gene expression. However, the current toolbox of gene regulatory tools for eukaryotic systems have been outpaced by those developed for simple, single-celled systems. Here, we engineered a set of gene regulatory tools by combining self-cleaving ribozymes with various upstream competing sequences that were designed to disrupt ribozyme self-cleavage. As a proof-of-concept, we were able to modulate GFP expression in mammalian cells, and then showed the feasibility of these tools in Drosophila embryos. For each system, the fold-reduction of gene expression was influenced by the location of the self-cleaving ribozyme/upstream competing sequence (i.e. 5' vs. 3' untranslated region) and the competing sequence used. Together, this work provides a set of genetic tools that can be used to tune gene expression across various eukaryotic systems.
    • The World of Stable Ribonucleoproteins and Its Mapping With Grad-Seq and Related Approaches.

      Gerovac, Milan; Vogel, Jörg; Smirnov, Alexandre; HIRI, Helmholtz-Institut für RNA-basierte Infektionsforschung, Josef-Shneider Strasse 2, 97080 Würzburg, Germany. (Frontiers, 2021-04-07)
      Macromolecular complexes of proteins and RNAs are essential building blocks of cells. These stable supramolecular particles can be viewed as minimal biochemical units whose structural organization, i.e., the way the RNA and the protein interact with each other, is directly linked to their biological function. Whether those are dynamic regulatory ribonucleoproteins (RNPs) or integrated molecular machines involved in gene expression, the comprehensive knowledge of these units is critical to our understanding of key molecular mechanisms and cell physiology phenomena. Such is the goal of diverse complexomic approaches and in particular of the recently developed gradient profiling by sequencing (Grad-seq). By separating cellular protein and RNA complexes on a density gradient and quantifying their distributions genome-wide by mass spectrometry and deep sequencing, Grad-seq charts global landscapes of native macromolecular assemblies. In this review, we propose a function-based ontology of stable RNPs and discuss how Grad-seq and related approaches transformed our perspective of bacterial and eukaryotic ribonucleoproteins by guiding the discovery of new RNA-binding proteins and unusual classes of noncoding RNAs. We highlight some methodological aspects and developments that permit to further boost the power of this technique and to look for exciting new biology in understudied and challenging biological models.
    • Your Base Editor Might Be Flirting with Single (Stranded) DNA: Faithful On-Target CRISPR Base Editing without Promiscuous Deamination.

      Collins, Scott P; Beisel, Chase L; HIRI, Helmholtz-Institut für RNA-basierte Infektionsforschung, Josef-Shneider Strasse 2, 97080 Würzburg, Germany. (Elsevier, 2020-09-03)
      Jin et al. (2020) engineered new variants of CRISPR base editors that make precise genomic edits in rice protoplasts while minimizing untargeted mutagenesis.
    • The Zinc Finger Antiviral Protein ZAP Restricts Human Cytomegalovirus and Selectively Binds and Destabilizes Viral / Transcripts.

      Gonzalez-Perez, Ana Cristina; Stempel, Markus; Wyler, Emanuel; Urban, Christian; Piras, Antonio; Hennig, Thomas; Ganskih, Sabina; Wei, Yuanjie; Heim, Albert; Landthaler, Markus; et al. (ASM, 2021-05-04)
      Interferon-stimulated gene products (ISGs) play a crucial role in early infection control. The ISG zinc finger CCCH-type antiviral protein 1 (ZAP/ZC3HAV1) antagonizes several RNA viruses by binding to CG-rich RNA sequences, whereas its effect on DNA viruses is less well understood. Here, we decipher the role of ZAP in the context of human cytomegalovirus (HCMV) infection, a β-herpesvirus that is associated with high morbidity in immunosuppressed individuals and newborns. We show that expression of the two major isoforms of ZAP, ZAP-S and ZAP-L, is induced during HCMV infection and that both negatively affect HCMV replication. Transcriptome and proteome analyses demonstrated that the expression of ZAP results in reduced viral mRNA and protein levels and decelerates the progression of HCMV infection. Metabolic RNA labeling combined with high-throughput sequencing (SLAM-seq) revealed that most of the gene expression changes late in infection result from the general attenuation of HCMV. Furthermore, at early stages of infection, ZAP restricts HCMV by destabilizing a distinct subset of viral mRNAs, particularly those from the previously uncharacterized UL4-UL6 HCMV gene locus. Through enhanced cross-linking immunoprecipitation and sequencing analysis (eCLIP-seq), we identified the transcripts expressed from this HCMV locus as the direct targets of ZAP. Moreover, our data show that ZAP preferentially recognizes not only CG, but also other cytosine-rich sequences, thereby expanding its target specificity. In summary, this report is the first to reveal direct targets of ZAP during HCMV infection, which strongly indicates that transcripts from the UL4-UL6 locus may play an important role for HCMV replication.IMPORTANCE Viral infections have a large impact on society, leading to major human and economic losses and even global instability. So far, many viral infections, including human cytomegalovirus (HCMV) infection, are treated with a small repertoire of drugs, often accompanied by the occurrence of resistant mutants. There is no licensed HCMV vaccine in sight to protect those most at risk, particularly immunocompromised individuals or pregnant women who might otherwise transmit the virus to the fetus. Thus, the identification of novel intervention strategies is urgently required. In this study, we show that ZAP decelerates the viral gene expression cascade, presumably by selectively handpicking a distinct set of viral transcripts for degradation. Our study illustrates the potent role of ZAP as an HCMV restriction factor and sheds light on a possible role for UL4 and/or UL5 early during infection, paving a new avenue for the exploration of potential targets for novel therapies.