News

group leader: Prof. Dr. Vogel

Recent Submissions

  • Increasing storage stability of freeze-dried plasma using trehalose.

    Brogna, Raffaele; Oldenhof, Harriëtte; Sieme, Harald; Figueiredo, Constança; Kerrinnes, Tobias; Wolkers, Willem F; HIRI, Helmholtz-Institut für RNA-basierte Infektionsforschung, Josef-Shneider Strasse 2, 97080 Würzburg, Germany. (PLOS, 2020-06-11)
    Preservation of blood plasma in the dried state would facilitate long-term storage and transport at ambient temperatures, without the need of to use liquid nitrogen tanks or freezers. The aim of this study was to investigate the feasibility of dry preservation of human plasma, using sugars as lyoprotectants, and evaluate macromolecular stability of plasma components during storage. Blood plasma from healthy donors was freeze dried using 0-10% glucose, sucrose, or trehalose, and stored at various temperatures. Differential scanning calorimetry was used to measure the glass transition temperatures of freeze-dried samples. Protein aggregation, the overall protein secondary structure, and oxidative damage were studied under different storage conditions. Differential scanning calorimetry measurements showed that plasma freeze-dried with glucose, sucrose and trehalose have glass transition temperatures of respectively 72±3.4°C, 46±11°C, 15±2.4°C. It was found that sugars diminish freeze-drying induced protein aggregation in a dose-dependent manner, and that a 10% (w/v) sugar concentration almost entirely prevents protein aggregation. Protein aggregation after rehydration coincided with relatively high contents of β-sheet structures in the dried state. Trehalose reduced the rate of protein aggregation during storage at elevated temperatures, and plasma that is freeze- dried plasma with trehalose showed a reduced accumulation of reactive oxygen species and protein oxidation products during storage. In conclusion, freeze-drying plasma with trehalose provides an attractive alternative to traditional cryogenic preservation
  • An RNA biology perspective on species-specific programmable RNA antibiotics.

    Vogel, Jörg; HIRI, Helmholtz-Institut für RNA-basierte Infektionsforschung, Josef-Shneider Strasse 2, 97080 Würzburg, Germany. (Wiley, 2020-03-17)
    Our body is colonized by a vast array of bacteria the sum of which forms our microbiota. The gut alone harbors >1,000 bacterial species. An understanding of their individual or synergistic contributions to human health and disease demands means to interfere with their functions on the species level. Most of the currently available antibiotics are broad-spectrum, thus too unspecific for a selective depletion of a single species of interest from the microbiota. Programmable RNA antibiotics in the form of short antisense oligonucleotides (ASOs) promise to achieve precision manipulation of bacterial communities. These ASOs are coupled to small peptides that carry them inside the bacteria to silence mRNAs of essential genes, for example, to target antibiotic-resistant pathogens as an alternative to standard antibiotics. There is already proof-of-principle with diverse bacteria, but many open questions remain with respect to true species specificity, potential off-targeting, choice of peptides for delivery, bacterial resistance mechanisms and the host response. While there is unlikely a one-fits-all solution for all microbiome species, I will discuss how recent progress in bacterial RNA biology may help to accelerate the development of programmable RNA antibiotics for microbiome editing and other applications.
  • Grad-seq in a Gram-positive bacterium reveals exonucleolytic sRNA activation in competence control.

    Hör, Jens; Garriss, Geneviève; Di Giorgio, Silvia; Hack, Lisa-Marie; Vanselow, Jens T; Förstner, Konrad U; Schlosser, Andreas; Henriques-Normark, Birgitta; Vogel, Jörg; HIRI, Helmholtz-Institut für RNA-basierte Infektionsforschung, Josef-Shneider Strasse 2, 97080 Würzburg, Germany. (EMBO Press, 2020-03-30)
    RNA-protein interactions are the crucial basis for many steps of bacterial gene expression, including post-transcriptional control by small regulatory RNAs (sRNAs). In stark contrast to recent progress in the analysis of Gram-negative bacteria, knowledge about RNA-protein complexes in Gram-positive species remains scarce. Here, we used the Grad-seq approach to draft a comprehensive landscape of such complexes in Streptococcus pneumoniae, in total determining the sedimentation profiles of ~ 88% of the transcripts and ~ 62% of the proteins of this important human pathogen. Analysis of in-gradient distributions and subsequent tag-based protein capture identified interactions of the exoribonuclease Cbf1/YhaM with sRNAs that control bacterial competence for DNA uptake. Unexpectedly, the nucleolytic activity of Cbf1 stabilizes these sRNAs, thereby promoting their function as repressors of competence. Overall, these results provide the first RNA/protein complexome resource of a Gram-positive species and illustrate how this can be utilized to identify new molecular factors with functions in RNA-based regulation of virulence-relevant pathways.
  • An Advanced Human Intestinal Coculture Model Reveals Compartmentalized Host and Pathogen Strategies during Infection.

    Schulte, Leon N; Schweinlin, Matthias; Westermann, Alexander J; Janga, Harshavardhan; Santos, Sara C; Appenzeller, Silke; Walles, Heike; Vogel, Jörg; Metzger, Marco; HIRI, Helmholtz-Institut für RNA-basierte Infektionsforschung, Josef-Shneider Strasse 2, 97080 Würzburg, Germany. (American Society for Microbiology (ASM), 2020-02-18)
    A major obstacle in infection biology is the limited ability to recapitulate human disease trajectories in traditional cell culture and animal models, which impedes the translation of basic research into clinics. Here, we introduce a three-dimensional (3D) intestinal tissue model to study human enteric infections at a level of detail that is not achieved by conventional two-dimensional monocultures. Our model comprises epithelial and endothelial layers, a primary intestinal collagen scaffold, and immune cells. Upon Salmonella infection, the model mimics human gastroenteritis, in that it restricts the pathogen to the epithelial compartment, an advantage over existing mouse models. Application of dual transcriptome sequencing to the Salmonella-infected model revealed the communication of epithelial, endothelial, monocytic, and natural killer cells among each other and with the pathogen. Our results suggest that Salmonella uses its type III secretion systems to manipulate STAT3-dependent inflammatory responses locally in the epithelium without accompanying alterations in the endothelial compartment. Our approach promises to reveal further human-specific infection strategies employed by Salmonella and other pathogens.IMPORTANCE Infection research routinely employs in vitro cell cultures or in vivo mouse models as surrogates of human hosts. Differences between murine and human immunity and the low level of complexity of traditional cell cultures, however, highlight the demand for alternative models that combine the in vivo-like properties of the human system with straightforward experimental perturbation. Here, we introduce a 3D tissue model comprising multiple cell types of the human intestinal barrier, a primary site of pathogen attack. During infection with the foodborne pathogen Salmonella enterica serovar Typhimurium, our model recapitulates human disease aspects, including pathogen restriction to the epithelial compartment, thereby deviating from the systemic infection in mice. Combination of our model with state-of-the-art genetics revealed Salmonella-mediated local manipulations of human immune responses, likely contributing to the establishment of the pathogen's infection niche. We propose the adoption of similar 3D tissue models to infection biology, to advance our understanding of molecular infection strategies employed by bacterial pathogens in their human host.
  • The chlamydial deubiquitinase Cdu1 supports recruitment of Golgi vesicles to the inclusion.

    Auer, Daniela; Hügelschäffer, Sophie D; Fischer, Annette B; Rudel, Thomas; HIRI, Helmholtz-Institut für RNA-basierte Infektionsforschung, Josef-Shneider Strasse 2, 97080 Würzburg, Germany. (Wiley, 2019-11-01)
    Chlamydia trachomatis is the main cause of sexually transmitted diseases worldwide. As obligate intracellular bacteria Chlamydia replicate in a membrane bound vacuole called inclusion and acquire nutrients for growth and replication from their host cells. However, like all intracellular bacteria, Chlamydia have to prevent eradication by the host's cell autonomous system. The chlamydial deubiquitinase Cdu1 is secreted into the inclusion membrane, facing the host cell cytosol where it deubiquitinates cellular proteins. Here we show that inactivation of Cdu1 causes a growth defect of C. trachomatis in primary cells. Moreover, ubiquitin and several autophagy receptors are recruited to the inclusion membrane of Cdu1-deficient Chlamydia. Interestingly, the growth defect of cdu1 mutants is not rescued when autophagy is prevented. We find reduced recruitment of Golgi vesicles to the inclusion of Cdu1 mutants indicating that vesicular trafficking is altered in bacteria without active deubiquitinase (DUB). Our work elucidates an important role of Cdu1 in the functional preservation of the chlamydial inclusion surface.
  • Herpes simplex virus blocks host transcription termination via the bimodal activities of ICP27.

    Wang, Xiuye; Hennig, Thomas; Whisnant, Adam W; Erhard, Florian; Prusty, Bhupesh K; Friedel, Caroline C; Forouzmand, Elmira; Hu, William; Erber, Luke; Chen, Yue; et al. (Nature publishing group, 2020-01-15)
    Infection by viruses, including herpes simplex virus-1 (HSV-1), and cellular stresses causewidespread disruption of transcription termination (DoTT) of RNA polymerase II (RNAPII) inhost genes. However, the underlying mechanisms remain unclear. Here, we demonstrate thatthe HSV-1 immediate early protein ICP27 induces DoTT by directly binding to the essentialmRNA 3’processing factor CPSF. It thereby induces the assembly of a dead-end 3’processing complex, blocking mRNA 3’cleavage. Remarkably, ICP27 also acts as a sequence-dependent activator of mRNA 3’processing for viral and a subset of host transcripts.Our results unravel a bimodal activity of ICP27 that plays a key role in HSV-1-induced hostshutoff and identify CPSF as an important factor that mediates regulation of transcriptiontermination. Thesefindings have broad implications for understanding the regulation oftranscription termination by other viruses, cellular stress and cancer.
  • An RNA Surprise in Bacterial Effector Mechanisms

    Gerovac, Milan; Vogel, Jörg; HIRI, Helmholtz-Institut für RNA-basierte Infektionsforschung, Josef-Shneider Strasse 2, 97080 Würzburg, Germany. (Elsevier BV, 2019-12)
    acterial pathogens secrete effector proteins to manipulate host signaling proteins and cellular structures. In this issue of Cell Host & Microbe, Pagliuso et al. (2019) propose an effector mechanism in Listeria monocytogenes whereby an RNA-binding protein associates with bacterial RNA that stimulates RIG-I (retinoic acid inducible gene I)-based innate immunity in the host cytosol.
  • The conserved 3' UTR-derived small RNA NarS mediates mRNA crossregulation during nitrate respiration.

    Wang, Chuan; Chao, Yanjie; Matera, Gianluca; Gao, Qian; Vogel, Jörg; HIRI, Helmholtz-Institut für RNA-basierte Infektionsforschung, Josef-Shneider Strasse 2, 97080 Würzburg, Germany. (Oxford Academic, 2019-12-21)
    Small noncoding RNAs (sRNAs) from mRNA 3' UTRs seem to present a previously unrecognized layer of bacterial post-transcriptional control whereby mRNAs influence each other's expression, independently of transcriptional control. Studies in Escherichia coli and Salmonella enterica showed that such sRNAs are natural products of RNase E-mediated mRNA decay and associate with major RNA-binding proteins (RBPs) such as Hfq and ProQ. If so, there must be additional sRNAs from mRNAs that accumulate only under specific physiological conditions. We test this prediction by characterizing candidate NarS that represents the 3' UTR of nitrate transporter NarK whose gene is silent during standard aerobic growth. We find that NarS acts by Hfq-dependent base pairing to repress the synthesis of the nitrite transporter, NirC, resulting in mRNA cross-regulation of nitrate and nitrite transporter genes. Interestingly, the NarS-mediated repression selectively targets the nirC cistron of the long nirBDC-cysG operon, an observation that we rationalize as a mechanism to protect the bacterial cytoplasm from excessive nitrite toxicity during anaerobic respiration with abundant nitrate. Our successful functional assignment of a 3' UTR sRNA from a non-standard growth condition supports the notion that mRNA crossregulation is more pervasive than currently appreciated.
  • RNA target profiles direct the discovery of virulence functions for the cold-shock proteins CspC and CspE.

    Michaux, Charlotte; Holmqvist, Erik; Vasicek, Erin; Sharan, Malvika; Barquist, Lars; Westermann, Alexander J; Gunn, John S; Vogel, Jörg; HIRI, Helmholtz-Institut für RNA-basierte Infektionsforschung, Josef-Shneider Strasse 2, 97080 Würzburg, Germany. (National Academy of Sciences, 2017-06-27)
    The functions of many bacterial RNA-binding proteins remain obscure because of a lack of knowledge of their cellular ligands. Although well-studied cold-shock protein A (CspA) family members are induced and function at low temperature, others are highly expressed in infection-relevant conditions. Here, we have profiled transcripts bound in vivo by the CspA family members of Salmonella enterica serovar Typhimurium to link the constitutively expressed CspC and CspE proteins with virulence pathways. Phenotypic assays in vitro demonstrated a crucial role for these proteins in membrane stress, motility, and biofilm formation. Moreover, double deletion of cspC and cspE fully attenuates Salmonella in systemic mouse infection. In other words, the RNA ligand-centric approach taken here overcomes a problematic molecular redundancy of CspC and CspE that likely explains why these proteins have evaded selection in previous virulence factor screens in animals. Our results highlight RNA-binding proteins as regulators of pathogenicity and potential targets of antimicrobial therapy. They also suggest that globally acting RNA-binding proteins are more common in bacteria than currently appreciated.
  • scSLAM-seq reveals core features of transcription dynamics in single cells.

    Erhard, Florian; Baptista, Marisa A P; Krammer, Tobias; Hennig, Thomas; Lange, Marius; Arampatzi, Panagiota; Jürges, Christopher S; Theis, Fabian J; Saliba, Antoine-Emmanuel; Dölken, Lars; et al. (Springer-Nature, 2019-01-01)
    Single-cell RNA sequencing (scRNA-seq) has highlighted the important role of intercellular heterogeneity in phenotype variability in both health and disease1. However, current scRNA-seq approaches provide only a snapshot of gene expression and convey little information on the true temporal dynamics and stochastic nature of transcription. A further key limitation of scRNA-seq analysis is that the RNA profile of each individual cell can be analysed only once. Here we introduce single-cell, thiol-(SH)-linked alkylation of RNA for metabolic labelling sequencing (scSLAM-seq), which integrates metabolic RNA labelling2, biochemical nucleoside conversion3 and scRNA-seq to record transcriptional activity directly by differentiating between new and old RNA for thousands of genes per single cell. We use scSLAM-seq to study the onset of infection with lytic cytomegalovirus in single mouse fibroblasts. The cell-cycle state and dose of infection deduced from old RNA enable dose-response analysis based on new RNA. scSLAM-seq thereby both visualizes and explains differences in transcriptional activity at the single-cell level. Furthermore, it depicts 'on-off' switches and transcriptional burst kinetics in host gene expression with extensive gene-specific differences that correlate with promoter-intrinsic features (TBP-TATA-box interactions and DNA methylation). Thus, gene-specific, and not cell-specific, features explain the heterogeneity in transcriptomes between individual cells and the transcriptional response to perturbations.
  • Global Maps of ProQ Binding In Vivo Reveal Target Recognition via RNA Structure and Stability Control at mRNA 3' Ends.

    Holmqvist, Erik; Li, Lei; Bischler, Thorsten; Barquist, Lars; Vogel, Jörg; HIRI, Helmholtz-Institut für RNA-basierte Infektionsforschung, Josef-Shneider Strasse 2, 97080 Würzburg, Germany. (Elsevier, 2018-06-07)
    The conserved RNA-binding protein ProQ has emerged as the centerpiece of a previously unknown third large network of post-transcriptional control in enterobacteria. Here, we have used in vivo UV crosslinking and RNA sequencing (CLIP-seq) to map hundreds of ProQ binding sites in Salmonella enterica and Escherichia coli. Our analysis of these binding sites, many of which are conserved, suggests that ProQ recognizes its cellular targets through RNA structural motifs found in small RNAs (sRNAs) and at the 3′ end of mRNAs. Using the cspE mRNA as a model for 3′ end targeting, we reveal a function for ProQ in protecting mRNA against exoribonucleolytic activity. Taken together, our results underpin the notion that ProQ governs a post-transcriptional network distinct from those of the well-characterized sRNA-binding proteins, CsrA and Hfq, and suggest a previously unrecognized, sRNA-independent role of ProQ in stabilizing mRNAs.
  • Salmonella persisters undermine host immune defenses during antibiotic treatment.

    Stapels, Daphne A C; Hill, Peter W S; Westermann, Alexander J; Fisher, Robert A; Thurston, Teresa L; Saliba, Antoine-Emmanuel; Blommestein, Isabelle; Vogel, Jörg; Helaine, Sophie; HIRI, Helmholtz-Institut für RNA-basierte Infektionsforschung, Josef-Shneider Strasse 2, 97080 Würzburg, Germany. (American Association for the Advancement of Science, 2018-12-07)
    Many bacterial infections are hard to treat and tend to relapse, possibly due to the presence of antibiotic-tolerant persisters. In vitro, persister cells appear to be dormant. After uptake of Salmonella species by macrophages, nongrowing persisters also occur, but their physiological state is poorly understood. In this work, we show that Salmonella persisters arising during macrophage infection maintain a metabolically active state. Persisters reprogram macrophages by means of effectors secreted by the Salmonella pathogenicity island 2 type 3 secretion system. These effectors dampened proinflammatory innate immune responses and induced anti-inflammatory macrophage polarization. Such reprogramming allowed nongrowing Salmonella cells to survive for extended periods in their host. Persisters undermining host immune defenses might confer an advantage to the pathogen during relapse once antibiotic pressure is relieved.
  • RNA-binding proteins in bacteria.

    Holmqvist, Erik; Vogel, Jörg; HIRI, Helmholtz-Institut für RNA-basierte Infektionsforschung, Josef-Shneider Strasse 2, 97080 Würzburg, Germany. (Springer Nature, 2018-10-01)
    RNA-binding proteins (RBPs) are central to most if not all cellular processes, dictating the fate of virtually all RNA molecules in the cell. Starting with pioneering work on ribosomal proteins, studies of bacterial RBPs have paved the way for molecular studies of RNA-protein interactions. Work over the years has identified major RBPs that act on cellular transcripts at the various stages of bacterial gene expression and that enable their integration into post-transcriptional networks that also comprise small non-coding RNAs. Bacterial RBP research has now entered a new era in which RNA sequencing-based methods permit mapping of RBP activity in a truly global manner in vivo. Moreover, the soaring interest in understudied members of host-associated microbiota and environmental communities is likely to unveil new RBPs and to greatly expand our knowledge of RNA-protein interactions in bacteria.
  • The Major RNA-Binding Protein ProQ Impacts Virulence Gene Expression in Salmonella enterica Serovar Typhimurium.

    Westermann, Alexander J; Venturini, Elisa; Sellin, Mikael E; Förstner, Konrad U; Hardt, Wolf-Dietrich; Vogel, Jörg; HIRI, Helmholtz-Institut für RNA-basierte Infektionsforschung, Josef-Shneider Strasse 2, 97080 Würzburg, Germany. (Amercan Society of Microbiology, 2019-01-02)
    FinO domain proteins such as ProQ of the model pathogen
  • Stress-induced host membrane remodeling protects from infection by non-motile bacterial pathogens.

    Tawk, Caroline; Nigro, Giulia; Rodrigues Lopes, Ines; Aguilar, Carmen; Lisowski, Clivia; Mano, Miguel; Sansonetti, Philippe; Vogel, Jörg; Eulalio, Ana; HIRI, Helmholtz-Institut für RNA-basierte Infektionsforschung, Josef-Shneider Strasse 2, 97080 Würzburg, Germany. (2018-11-02)
    While mucosal inflammation is a major source of stress during enteropathogen infection, it remains to be fully elucidated how the host benefits from this environment to clear the pathogen. Here, we show that host stress induced by different stimuli mimicking inflammatory conditions strongly reduces the binding of Shigella flexneri to epithelial cells. Mechanistically, stress activates acid sphingomyelinase leading to host membrane remodeling. Consequently, knockdown or pharmacological inhibition of the acid sphingomyelinase blunts the stress-dependent inhibition of Shigella binding to host cells. Interestingly, stress caused by intracellular Shigella replication also results in remodeling of the host cell membrane, in vitro and in vivo, which precludes re-infection by this and other non-motile pathogens. In contrast, Salmonella Typhimurium overcomes the shortage of permissive entry sites by gathering effectively at the remaining platforms through its flagellar motility. Overall, our findings reveal host membrane remodeling as a novel stress-responsive cell-autonomous defense mechanism that protects epithelial cells from infection by non-motile bacterial pathogens.
  • Long Noncoding RNA SSR42 Controls Staphylococcus aureus Alpha-Toxin Transcription in Response to Environmental Stimuli.

    Horn, Jessica; Klepsch, Maximilian; Manger, Michelle; Wolz, Christiane; Rudel, Thomas; Fraunholz, Martin; HIRI, Helmholtz-Institut für RNA-basierte Infektionsforschung, Josef-Shneider Strasse 2, 97080 Würzburg, Germany. (2018-11-15)
    Staphylococcus aureus is a human pathogen causing a variety of diseases by versatile expression of a large set of virulence factors that most prominently features the cytotoxic and hemolytic pore-forming alpha-toxin. Expression of alpha-toxin is regulated by an intricate network of transcription factors. These include two-component systems sensing quorum and environmental signals as well as regulators reacting to the nutritional status of the pathogen. We previously identified the repressor of surface proteins (Rsp) as a virulence regulator. Acute cytotoxicity and hemolysis are strongly decreased in rsp mutants, which are characterized by decreased transcription of toxin genes as well as loss of transcription of a 1,232- nucleotide (nt)-long noncoding RNA (ncRNA), SSR42. Here, we show that SSR42 is the effector of Rsp in transcription regulation of the alpha-toxin gene, hla. SSR42 transcription is enhanced after exposure of S. aureus to subinhibitory concentrations of oxacillin which thus leads to an SSR42-dependent increase in hemolysis. Aside from Rsp, SSR42 transcription is under the control of additional global regulators, such as CodY, AgrA, CcpE, and B, but is positioned upstream of the two-component system SaeRS in the regulatory cascade leading to alpha-toxin production. Thus, alpha-toxin expression depends on two long ncRNAs, SSR42 and RNAIII, which control production of the cytolytic toxin on the transcriptional and translational levels, respectively, with SSR42 as an important regulator of SaeRS-dependent S. aureus toxin production in response to environmental and metabolic signals. IMPORTANCE Staphylococcus aureus is a major cause of life-threatening infections. The bacterium expresses alpha-toxin, a hemolysin and cytotoxin responsible for many of the pathologies of S. aureus. Alpha-toxin production is enhanced by subinhibitory concentrations of antibiotics. Here, we show that this process is dependent on the long noncoding RNA, SSR42. Further, SSR42 itself is regulated by several global regulators, thereby integrating environmental and nutritional signals that modulate hemolysis of the pathogen.
  • Genome organization and DNA accessibility control antigenic variation in trypanosomes.

    Müller, Laura S M; Cosentino, Raúl O; Förstner, Konrad U; Guizetti, Julien; Wedel, Carolin; Kaplan, Noam; Janzen, Christian J; Arampatzi, Panagiota; Vogel, Jörg; Steinbiss, Sascha; et al. (2018-01-01)
    Many evolutionarily distant pathogenic organisms have evolved similar survival strategies to evade the immune responses of their hosts. These include antigenic variation, through which an infecting organism prevents clearance by periodically altering the identity of proteins that are visible to the immune system of the host1. Antigenic variation requires large reservoirs of immunologically diverse antigen genes, which are often generated through homologous recombination, as well as mechanisms to ensure the expression of one or very few antigens at any given time. Both homologous recombination and gene expression are affected by three-dimensional genome architecture and local DNA accessibility2,3. Factors that link three-dimensional genome architecture, local chromatin conformation and antigenic variation have, to our knowledge, not yet been identified in any organism. One of the major obstacles to studying the role of genome architecture in antigenic variation has been the highly repetitive nature and heterozygosity of antigen-gene arrays, which has precluded complete genome assembly in many pathogens. Here we report the de novo haplotype-specific assembly and scaffolding of the long antigen-gene arrays of the model protozoan parasite Trypanosoma brucei, using long-read sequencing technology and conserved features of chromosome folding4. Genome-wide chromosome conformation capture (Hi-C) reveals a distinct partitioning of the genome, with antigen-encoding subtelomeric regions that are folded into distinct, highly compact compartments. In addition, we performed a range of analyses—Hi-C, fluorescence in situ hybridization, assays for transposase-accessible chromatin using sequencing and single-cell RNA sequencing—that showed that deletion of the histone variants H3.V and H4.V increases antigen-gene clustering, DNA accessibility across sites of antigen expression and switching of the expressed antigen isoform, via homologous recombination. Our analyses identify histone variants as a molecular link between global genome architecture, local chromatin conformation and antigenic variation.
  • Nuclear lncRNA stabilization in the host response to bacterial infection.

    Munschauer, Mathias; Vogel, Jörg; HIRI, Helmholtz-Institut für RNA-basierte Infektionsforschung, Josef-Shneider Strasse 2, 97080 Würzburg, Germany. (2018-07-02)
    Long non-coding RNAs (lncRNAs) play important roles in many cellular pathways, but their contribution to the defense of eukaryotic cells against pathogens remains poorly understood. A new study from Imamura et al in The EMBO Journal reports that Salmonella infection in human cells impacts nuclear RNA decay, which in turn drives the accumulation of otherwise unstable nuclear lncRNAs, some of which may have protective effects against this common bacterial pathogen. These unexpected findings demand more efforts to fully decrypt the molecular functions of lncRNAs in innate and adaptive immunity.
  • HHV-6 encoded small non-coding RNAs define an intermediate and early stage in viral reactivation.

    Prusty, Bhupesh K; Gulve, Nitish; Chowdhury, Suvagata Roy; Schuster, Michael; Strempel, Sebastian; Descamps, Vincent; Rudel, Thomas; HIRI, Helmholtz-Institut für RNA-basierte Infektionsforschung, Josef-Shneider Strasse 2, 97080 Würzburg, Germany. (2018-01-01)
    Human herpesvirus 6A and 6B frequently acquires latency. HHV-6 activation has been associated with various human diseases. Germ line inheritance of chromosomally integrated HHV-6 makes viral DNA-based analysis difficult for determination of early stages of viral activation. We characterized early stages of HHV-6 activation using high throughput transcriptomics studies and applied the results to understand virus activation under clinical conditions. Using a latent HHV-6A cell culture model in U2OS cells, we identified an early stage of viral reactivation, which we define as transactivation that is marked by transcription of several viral small non-coding RNAs (sncRNAs) in the absence of detectable increase in viral replication and proteome. Using deep sequencing approaches, we detected previously known as well as a new viral sncRNAs that characterized viral transactivation and differentiated it from latency. Here we show changes in human transcriptome upon viral transactivation that reflect multiple alterations in mitochondria-associated pathways, which was supported by observation of increased mitochondrial fragmentation in virus reactivated cells. Furthermore, we present here a unique clinical case of DIHS/DRESS associated death where HHV-6 sncRNA-U14 was abundantly detected throughout the body of the patient in the presence of low viral DNA. In this study, we have identified a unique and early stage of viral activation that is characterized by abundant transcription of viral sncRNAs, which can serve as an ideal biomarker under clinical conditions.
  • New RNA-seq approaches for the study of bacterial pathogens.

    Saliba, Antoine-Emmanuel; C Santos, Sara; Vogel, Jörg; Helmoltz-Institut für RNA-basierteInfektionsforschung, Josef-Schneider-Strasse 2, 97080 Würzburg, Germany. (2017-01-01)
    Understanding how bacteria cause disease requires knowledge of which genes are expressed and how they are regulated during infection. While RNA-seq is now a routine method for gene expression analysis in bacterial pathogens, the past years have also witnessed a surge of novel RNA-seq based approaches going beyond standard mRNA profiling. These include variations of the technique to capture post-transcriptional networks controlled by small RNAs and to discover associated RNA-binding proteins in the pathogen itself. Dual RNA-seq analyzing pathogen and host simultaneously has revealed roles of noncoding RNAs during infection and enabled the correlation of bacterial gene activity with specific host responses. Single-cell RNA-seq studies have addressed how heterogeneity among individual host cells may determine infection outcomes.

View more