• Dissecting Herpes Simplex Virus 1-Induced Host Shutoff at the RNA Level.

      Friedel, Caroline C; Whisnant, Adam W; Djakovic, Lara; Rutkowski, Andrzej J; Friedl, Marie-Sophie; Kluge, Michael; Williamson, James C; Sai, Somesh; Vidal, Ramon Oliveira; Sauer, Sascha; et al. (American Society for Microbilogy (ASM), 2020-11-04)
      Herpes simplex virus 1 (HSV-1) induces a profound host shut-off during lytic infection. The virion host shut-off (vhs) protein plays a key role in this process by efficiently cleaving host and viral mRNAs. Furthermore, the onset of viral DNA replication is accompanied by a rapid decline in host transcriptional activity. To dissect relative contributions of both mechanisms and elucidate gene-specific host transcriptional responses throughout the first 8h of lytic HSV-1 infection, we employed RNA-seq of total, newly transcribed (4sU-labelled) and chromatin-associated RNA in wild-type (WT) and Δvhs infection of primary human fibroblasts. Following virus entry, vhs activity rapidly plateaued at an elimination rate of around 30% of cellular mRNAs per hour until 8h p.i. In parallel, host transcriptional activity dropped to 10-20%. While the combined effects of both phenomena dominated infection-induced changes in total RNA, extensive gene-specific transcriptional regulation was observable in chromatin-associated RNA and was surprisingly concordant between WT and Δvhs infection. Both induced strong transcriptional up-regulation of a small subset of genes that were poorly expressed prior to infection but already primed by H3K4me3 histone marks at their promoters. Most interestingly, analysis of chromatin-associated RNA revealed vhs-nuclease-activity-dependent transcriptional down-regulation of at least 150 cellular genes, in particular of many integrin adhesome and extracellular matrix components. This was accompanied by a vhs-dependent reduction in protein levels by 8h p.i. for many of these genes. In summary, our study provides a comprehensive picture of the molecular mechanisms that govern cellular RNA metabolism during the first 8h of lytic HSV-1 infection.IMPORTANCE The HSV-1 virion host shut-off (vhs) protein efficiently cleaves both host and viral mRNAs in a translation-dependent manner. In this study, we model and quantify changes in vhs activity as well as virus-induced global loss of host transcriptional activity during productive HSV-1 infection. In general, HSV-1-induced alterations in total RNA levels were dominated by these two global effects. In contrast, chromatin-associated RNA depicted gene-specific transcriptional changes. This revealed highly concordant transcriptional changes in WT and Δvhs infection, confirmed DUX4 as a key transcriptional regulator in HSV-1 infection and depicted vhs-dependent, transcriptional down-regulation of the integrin adhesome and extracellular matrix components. The latter explained seemingly gene-specific effects previously attributed to vhs-mediated mRNA degradation and resulted in a concordant loss in protein levels by 8h p.i. for many of the respective genes.
    • Herpes simplex virus blocks host transcription termination via the bimodal activities of ICP27.

      Wang, Xiuye; Hennig, Thomas; Whisnant, Adam W; Erhard, Florian; Prusty, Bhupesh K; Friedel, Caroline C; Forouzmand, Elmira; Hu, William; Erber, Luke; Chen, Yue; et al. (Nature publishing group, 2020-01-15)
      Infection by viruses, including herpes simplex virus-1 (HSV-1), and cellular stresses causewidespread disruption of transcription termination (DoTT) of RNA polymerase II (RNAPII) inhost genes. However, the underlying mechanisms remain unclear. Here, we demonstrate thatthe HSV-1 immediate early protein ICP27 induces DoTT by directly binding to the essentialmRNA 3’processing factor CPSF. It thereby induces the assembly of a dead-end 3’processing complex, blocking mRNA 3’cleavage. Remarkably, ICP27 also acts as a sequence-dependent activator of mRNA 3’processing for viral and a subset of host transcripts.Our results unravel a bimodal activity of ICP27 that plays a key role in HSV-1-induced hostshutoff and identify CPSF as an important factor that mediates regulation of transcriptiontermination. Thesefindings have broad implications for understanding the regulation oftranscription termination by other viruses, cellular stress and cancer.
    • Integrative functional genomics decodes herpes simplex virus 1.

      Whisnant, Adam W; Jürges, Christopher S; Hennig, Thomas; Wyler, Emanuel; Prusty, Bhupesh; Rutkowski, Andrzej J; L'hernault, Anne; Djakovic, Lara; Göbel, Margarete; Döring, Kristina; et al. (NPG, 2020-04-27)
      The predicted 80 open reading frames (ORFs) of herpes simplex virus 1 (HSV-1) have been intensively studied for decades. Here, we unravel the complete viral transcriptome and translatome during lytic infection with base-pair resolution by computational integration of multi-omics data. We identify a total of 201 transcripts and 284 ORFs including all known and 46 novel large ORFs. This includes a so far unknown ORF in the locus deleted in the FDA-approved oncolytic virus Imlygic. Multiple transcript isoforms expressed from individual gene loci explain translation of the vast majority of ORFs as well as N-terminal extensions (NTEs) and truncations. We show that NTEs with non-canonical start codons govern the subcellular protein localization and packaging of key viral regulators and structural proteins. We extend the current nomenclature to include all viral gene products and provide a genome browser that visualizes all the obtained data from whole genome to single-nucleotide resolution.
    • Mechanism and consequences of herpes simplex virus 1-mediated regulation of host mRNA alternative polyadenylation.

      Wang, Xiuye; Liu, Liang; Whisnant, Adam W; Hennig, Thomas; Djakovic, Lara; Haque, Nabila; Bach, Cindy; Sandri-Goldin, Rozanne M; Erhard, Florian; Friedel, Caroline C; et al. (PLOS, 2021-03-08)
      Eukaryotic gene expression is extensively regulated by cellular stress and pathogen infections. We have previously shown that herpes simplex virus 1 (HSV-1) and several cellular stresses cause widespread disruption of transcription termination (DoTT) of RNA polymerase II (RNAPII) in host genes and that the viral immediate early factor ICP27 plays an important role in HSV-1-induced DoTT. Here, we show that HSV-1 infection also leads to widespread changes in alternative polyadenylation (APA) of host mRNAs. In the majority of cases, polyadenylation shifts to upstream poly(A) sites (PAS), including many intronic PAS. Mechanistically, ICP27 contributes to HSV-1-mediated APA regulation. HSV-1- and ICP27-induced activation of intronic PAS is sequence-dependent and does not involve general inhibition of U1 snRNP. HSV1-induced intronic polyadenylation is accompanied by early termination of RNAPII. HSV-1-induced mRNAs polyadenylated at intronic PAS (IPA) are exported into the cytoplasm while APA isoforms with extended 3' UTRs are sequestered in the nuclei, both preventing the expression of the full-length gene products. Finally we provide evidence that HSV-induced IPA isoforms are translated. Together with other recent studies, our results suggest that viral infection and cellular stresses induce a multi-faceted host response that includes DoTT and changes in APA profiles.
    • scSLAM-seq reveals core features of transcription dynamics in single cells.

      Erhard, Florian; Baptista, Marisa A P; Krammer, Tobias; Hennig, Thomas; Lange, Marius; Arampatzi, Panagiota; Jürges, Christopher S; Theis, Fabian J; Saliba, Antoine-Emmanuel; Dölken, Lars; et al. (Springer-Nature, 2019-01-01)
      Single-cell RNA sequencing (scRNA-seq) has highlighted the important role of intercellular heterogeneity in phenotype variability in both health and disease1. However, current scRNA-seq approaches provide only a snapshot of gene expression and convey little information on the true temporal dynamics and stochastic nature of transcription. A further key limitation of scRNA-seq analysis is that the RNA profile of each individual cell can be analysed only once. Here we introduce single-cell, thiol-(SH)-linked alkylation of RNA for metabolic labelling sequencing (scSLAM-seq), which integrates metabolic RNA labelling2, biochemical nucleoside conversion3 and scRNA-seq to record transcriptional activity directly by differentiating between new and old RNA for thousands of genes per single cell. We use scSLAM-seq to study the onset of infection with lytic cytomegalovirus in single mouse fibroblasts. The cell-cycle state and dose of infection deduced from old RNA enable dose-response analysis based on new RNA. scSLAM-seq thereby both visualizes and explains differences in transcriptional activity at the single-cell level. Furthermore, it depicts 'on-off' switches and transcriptional burst kinetics in host gene expression with extensive gene-specific differences that correlate with promoter-intrinsic features (TBP-TATA-box interactions and DNA methylation). Thus, gene-specific, and not cell-specific, features explain the heterogeneity in transcriptomes between individual cells and the transcriptional response to perturbations.
    • The Zinc Finger Antiviral Protein ZAP Restricts Human Cytomegalovirus and Selectively Binds and Destabilizes Viral / Transcripts.

      Gonzalez-Perez, Ana Cristina; Stempel, Markus; Wyler, Emanuel; Urban, Christian; Piras, Antonio; Hennig, Thomas; Ganskih, Sabina; Wei, Yuanjie; Heim, Albert; Landthaler, Markus; et al. (ASM, 2021-05-04)
      Interferon-stimulated gene products (ISGs) play a crucial role in early infection control. The ISG zinc finger CCCH-type antiviral protein 1 (ZAP/ZC3HAV1) antagonizes several RNA viruses by binding to CG-rich RNA sequences, whereas its effect on DNA viruses is less well understood. Here, we decipher the role of ZAP in the context of human cytomegalovirus (HCMV) infection, a β-herpesvirus that is associated with high morbidity in immunosuppressed individuals and newborns. We show that expression of the two major isoforms of ZAP, ZAP-S and ZAP-L, is induced during HCMV infection and that both negatively affect HCMV replication. Transcriptome and proteome analyses demonstrated that the expression of ZAP results in reduced viral mRNA and protein levels and decelerates the progression of HCMV infection. Metabolic RNA labeling combined with high-throughput sequencing (SLAM-seq) revealed that most of the gene expression changes late in infection result from the general attenuation of HCMV. Furthermore, at early stages of infection, ZAP restricts HCMV by destabilizing a distinct subset of viral mRNAs, particularly those from the previously uncharacterized UL4-UL6 HCMV gene locus. Through enhanced cross-linking immunoprecipitation and sequencing analysis (eCLIP-seq), we identified the transcripts expressed from this HCMV locus as the direct targets of ZAP. Moreover, our data show that ZAP preferentially recognizes not only CG, but also other cytosine-rich sequences, thereby expanding its target specificity. In summary, this report is the first to reveal direct targets of ZAP during HCMV infection, which strongly indicates that transcripts from the UL4-UL6 locus may play an important role for HCMV replication.IMPORTANCE Viral infections have a large impact on society, leading to major human and economic losses and even global instability. So far, many viral infections, including human cytomegalovirus (HCMV) infection, are treated with a small repertoire of drugs, often accompanied by the occurrence of resistant mutants. There is no licensed HCMV vaccine in sight to protect those most at risk, particularly immunocompromised individuals or pregnant women who might otherwise transmit the virus to the fetus. Thus, the identification of novel intervention strategies is urgently required. In this study, we show that ZAP decelerates the viral gene expression cascade, presumably by selectively handpicking a distinct set of viral transcripts for degradation. Our study illustrates the potent role of ZAP as an HCMV restriction factor and sheds light on a possible role for UL4 and/or UL5 early during infection, paving a new avenue for the exploration of potential targets for novel therapies.