• Herpes simplex virus blocks host transcription termination via the bimodal activities of ICP27.

      Wang, Xiuye; Hennig, Thomas; Whisnant, Adam W; Erhard, Florian; Prusty, Bhupesh K; Friedel, Caroline C; Forouzmand, Elmira; Hu, William; Erber, Luke; Chen, Yue; et al. (Nature publishing group, 2020-01-15)
      Infection by viruses, including herpes simplex virus-1 (HSV-1), and cellular stresses causewidespread disruption of transcription termination (DoTT) of RNA polymerase II (RNAPII) inhost genes. However, the underlying mechanisms remain unclear. Here, we demonstrate thatthe HSV-1 immediate early protein ICP27 induces DoTT by directly binding to the essentialmRNA 3’processing factor CPSF. It thereby induces the assembly of a dead-end 3’processing complex, blocking mRNA 3’cleavage. Remarkably, ICP27 also acts as a sequence-dependent activator of mRNA 3’processing for viral and a subset of host transcripts.Our results unravel a bimodal activity of ICP27 that plays a key role in HSV-1-induced hostshutoff and identify CPSF as an important factor that mediates regulation of transcriptiontermination. Thesefindings have broad implications for understanding the regulation oftranscription termination by other viruses, cellular stress and cancer.
    • Mechanism and consequences of herpes simplex virus 1-mediated regulation of host mRNA alternative polyadenylation.

      Wang, Xiuye; Liu, Liang; Whisnant, Adam W; Hennig, Thomas; Djakovic, Lara; Haque, Nabila; Bach, Cindy; Sandri-Goldin, Rozanne M; Erhard, Florian; Friedel, Caroline C; et al. (PLOS, 2021-03-08)
      Eukaryotic gene expression is extensively regulated by cellular stress and pathogen infections. We have previously shown that herpes simplex virus 1 (HSV-1) and several cellular stresses cause widespread disruption of transcription termination (DoTT) of RNA polymerase II (RNAPII) in host genes and that the viral immediate early factor ICP27 plays an important role in HSV-1-induced DoTT. Here, we show that HSV-1 infection also leads to widespread changes in alternative polyadenylation (APA) of host mRNAs. In the majority of cases, polyadenylation shifts to upstream poly(A) sites (PAS), including many intronic PAS. Mechanistically, ICP27 contributes to HSV-1-mediated APA regulation. HSV-1- and ICP27-induced activation of intronic PAS is sequence-dependent and does not involve general inhibition of U1 snRNP. HSV1-induced intronic polyadenylation is accompanied by early termination of RNAPII. HSV-1-induced mRNAs polyadenylated at intronic PAS (IPA) are exported into the cytoplasm while APA isoforms with extended 3' UTRs are sequestered in the nuclei, both preventing the expression of the full-length gene products. Finally we provide evidence that HSV-induced IPA isoforms are translated. Together with other recent studies, our results suggest that viral infection and cellular stresses induce a multi-faceted host response that includes DoTT and changes in APA profiles.