• An Advanced Human Intestinal Coculture Model Reveals Compartmentalized Host and Pathogen Strategies during Infection.

      Schulte, Leon N; Schweinlin, Matthias; Westermann, Alexander J; Janga, Harshavardhan; Santos, Sara C; Appenzeller, Silke; Walles, Heike; Vogel, Jörg; Metzger, Marco; HIRI, Helmholtz-Institut für RNA-basierte Infektionsforschung, Josef-Shneider Strasse 2, 97080 Würzburg, Germany. (American Society for Microbiology (ASM), 2020-02-18)
      A major obstacle in infection biology is the limited ability to recapitulate human disease trajectories in traditional cell culture and animal models, which impedes the translation of basic research into clinics. Here, we introduce a three-dimensional (3D) intestinal tissue model to study human enteric infections at a level of detail that is not achieved by conventional two-dimensional monocultures. Our model comprises epithelial and endothelial layers, a primary intestinal collagen scaffold, and immune cells. Upon Salmonella infection, the model mimics human gastroenteritis, in that it restricts the pathogen to the epithelial compartment, an advantage over existing mouse models. Application of dual transcriptome sequencing to the Salmonella-infected model revealed the communication of epithelial, endothelial, monocytic, and natural killer cells among each other and with the pathogen. Our results suggest that Salmonella uses its type III secretion systems to manipulate STAT3-dependent inflammatory responses locally in the epithelium without accompanying alterations in the endothelial compartment. Our approach promises to reveal further human-specific infection strategies employed by Salmonella and other pathogens.IMPORTANCE Infection research routinely employs in vitro cell cultures or in vivo mouse models as surrogates of human hosts. Differences between murine and human immunity and the low level of complexity of traditional cell cultures, however, highlight the demand for alternative models that combine the in vivo-like properties of the human system with straightforward experimental perturbation. Here, we introduce a 3D tissue model comprising multiple cell types of the human intestinal barrier, a primary site of pathogen attack. During infection with the foodborne pathogen Salmonella enterica serovar Typhimurium, our model recapitulates human disease aspects, including pathogen restriction to the epithelial compartment, thereby deviating from the systemic infection in mice. Combination of our model with state-of-the-art genetics revealed Salmonella-mediated local manipulations of human immune responses, likely contributing to the establishment of the pathogen's infection niche. We propose the adoption of similar 3D tissue models to infection biology, to advance our understanding of molecular infection strategies employed by bacterial pathogens in their human host.
    • ANNOgesic: a Swiss army knife for the RNA-seq based annotation of bacterial/archaeal genomes.

      Yu, Sung-Huan; Vogel, Jörg; Förstner, Konrad U; HIRI, Helmoltz-Institut für RNA-basierteInfektionsforschung, Josef-Schneider-Strasse 2, 97080 Würzburg, Germany. (2018-09-01)
      To understand the gene regulation of an organism of interest, a comprehensive genome annotation is essential. While some features, such as coding sequences, can be computationally predicted with high accuracy based purely on the genomic sequence, others, such as promoter elements or noncoding RNAs, are harder to detect. RNA sequencing (RNA-seq) has proven to be an efficient method to identify these genomic features and to improve genome annotations. However, processing and integrating RNA-seq data in order to generate high-resolution annotations is challenging, time consuming, and requires numerous steps. We have constructed a powerful and modular tool called ANNOgesic that provides the required analyses and simplifies RNA-seq-based bacterial and archaeal genome annotation. It can integrate data from conventional RNA-seq and differential RNA-seq and predicts and annotates numerous features, including small noncoding RNAs, with high precision. The software is available under an open source license (ISCL) at https://pypi.org/project/ANNOgesic/.
    • Bacterial RNA Biology on a Genome Scale.

      Hör, Jens; Gorski, Stanislaw A; Vogel, Jörg; HIRI, Helmholtz-Institut für RNA-basierte Infektionsforschung, Josef-Schneider-Strasse 2, 97080 Würzburg, Germany. (2018-01-16)
      Bacteria are an exceedingly diverse group of organisms whose molecular exploration is experiencing a renaissance. While the classical view of bacterial gene expression was relatively simple, the emerging view is more complex, encompassing extensive post-transcriptional control involving riboswitches, RNA thermometers, and regulatory small RNAs (sRNAs) associated with the RNA-binding proteins CsrA, Hfq, and ProQ, as well as CRISPR/Cas systems that are programmed by RNAs. Moreover, increasing interest in members of the human microbiota and environmental microbial communities has highlighted the importance of understudied bacterial species with largely unknown transcriptome structures and RNA-based control mechanisms. Collectively, this creates a need for global RNA biology approaches that can rapidly and comprehensively analyze the RNA composition of a bacterium of interest. We review such approaches with a focus on RNA-seq as a versatile tool to investigate the different layers of gene expression in which RNA is made, processed, regulated, modified, translated, and turned over.
    • The chlamydial deubiquitinase Cdu1 supports recruitment of Golgi vesicles to the inclusion.

      Auer, Daniela; Hügelschäffer, Sophie D; Fischer, Annette B; Rudel, Thomas; HIRI, Helmholtz-Institut für RNA-basierte Infektionsforschung, Josef-Shneider Strasse 2, 97080 Würzburg, Germany. (Wiley, 2019-11-01)
      Chlamydia trachomatis is the main cause of sexually transmitted diseases worldwide. As obligate intracellular bacteria Chlamydia replicate in a membrane bound vacuole called inclusion and acquire nutrients for growth and replication from their host cells. However, like all intracellular bacteria, Chlamydia have to prevent eradication by the host's cell autonomous system. The chlamydial deubiquitinase Cdu1 is secreted into the inclusion membrane, facing the host cell cytosol where it deubiquitinates cellular proteins. Here we show that inactivation of Cdu1 causes a growth defect of C. trachomatis in primary cells. Moreover, ubiquitin and several autophagy receptors are recruited to the inclusion membrane of Cdu1-deficient Chlamydia. Interestingly, the growth defect of cdu1 mutants is not rescued when autophagy is prevented. We find reduced recruitment of Golgi vesicles to the inclusion of Cdu1 mutants indicating that vesicular trafficking is altered in bacteria without active deubiquitinase (DUB). Our work elucidates an important role of Cdu1 in the functional preservation of the chlamydial inclusion surface.
    • The conserved 3' UTR-derived small RNA NarS mediates mRNA crossregulation during nitrate respiration.

      Wang, Chuan; Chao, Yanjie; Matera, Gianluca; Gao, Qian; Vogel, Jörg; HIRI, Helmholtz-Institut für RNA-basierte Infektionsforschung, Josef-Shneider Strasse 2, 97080 Würzburg, Germany. (Oxford Academic, 2019-12-21)
      Small noncoding RNAs (sRNAs) from mRNA 3' UTRs seem to present a previously unrecognized layer of bacterial post-transcriptional control whereby mRNAs influence each other's expression, independently of transcriptional control. Studies in Escherichia coli and Salmonella enterica showed that such sRNAs are natural products of RNase E-mediated mRNA decay and associate with major RNA-binding proteins (RBPs) such as Hfq and ProQ. If so, there must be additional sRNAs from mRNAs that accumulate only under specific physiological conditions. We test this prediction by characterizing candidate NarS that represents the 3' UTR of nitrate transporter NarK whose gene is silent during standard aerobic growth. We find that NarS acts by Hfq-dependent base pairing to repress the synthesis of the nitrite transporter, NirC, resulting in mRNA cross-regulation of nitrate and nitrite transporter genes. Interestingly, the NarS-mediated repression selectively targets the nirC cistron of the long nirBDC-cysG operon, an observation that we rationalize as a mechanism to protect the bacterial cytoplasm from excessive nitrite toxicity during anaerobic respiration with abundant nitrate. Our successful functional assignment of a 3' UTR sRNA from a non-standard growth condition supports the notion that mRNA crossregulation is more pervasive than currently appreciated.
    • The CRISPR/Cas system in Neisseria meningitidis affects bacterial adhesion to human nasopharyngeal epithelial cells.

      Heidrich, Nadja; Hagmann, Antony; Bauriedl, Saskia; Vogel, Jörg; Schoen, Christoph; HIRI, Helmoltz-Institut für RNA-basierteInfektionsforschung, Josef-Schneider-Strasse 2, 97080 Würzburg, Germany. (2018-07-30)
      Neisseria meningitidis, a commensal β-proteobacterium of the human nasopharynx, constitutes a worldwide leading cause of sepsis and epidemic meningitis. A recent genome-wide association study suggested an association of its type II-C CRISPR/Cas system with carriage and thus less invasive lineages. Here, we show that knock-out strains lacking the Cas9 protein are impaired in the adhesion to human nasopharyngeal cells which constitutes a central step in the pathogenesis of invasive meningococcal disease. Transcriptome sequencing data further suggest that meningococcal Cas9 does not affect the expression of surface adhesins but rather exerts its effect on cell adhesion in an indirect manner. Consequently, we speculate that the meningococcal CRISPR/Cas system exerts novel functions beyond its established role in defence against foreign DNA.
    • CRP-cAMP mediates silencing of Salmonella virulence at the post-transcriptional level.

      El Mouali, Youssef; Gaviria-Cantin, Tania; Sánchez-Romero, María Antonia; Gibert, Marta; Westermann, Alexander J; Vogel, Jörg; Balsalobre, Carlos; HIRI, Helmoltz-Institut für RNA-basierteInfektionsforschung, Josef-Schneider-Strasse 2, 97080 Würzburg, Germany. (2018-01-01)
      Invasion of epithelial cells by Salmonella enterica requires expression of genes located in the pathogenicity island I (SPI-1). The expression of SPI-1 genes is very tightly regulated and activated only under specific conditions. Most studies have focused on the regulatory pathways that induce SPI-1 expression. Here, we describe a new regulatory circuit involving CRP-cAMP, a widely established metabolic regulator, in silencing of SPI-1 genes under non-permissive conditions. In CRP-cAMP-deficient strains we detected a strong upregulation of SPI-1 genes in the mid-logarithmic growth phase. Genetic analyses revealed that CRP-cAMP modulates the level of HilD, the master regulator of Salmonella invasion. This regulation occurs at the post-transcriptional level and requires the presence of a newly identified regulatory motif within the hilD 3'UTR. We further demonstrate that in Salmonella the Hfq-dependent sRNA Spot 42 is under the transcriptional repression of CRP-cAMP and, when this transcriptional repression is relieved, Spot 42 exerts a positive effect on hilD expression. In vivo and in vitro assays indicate that Spot 42 targets, through its unstructured region III, the 3'UTR of the hilD transcript. Together, our results highlight the biological relevance of the hilD 3'UTR as a hub for post-transcriptional control of Salmonella invasion gene expression.
    • Einzelzell-RNA-Sequenzierung beleuchtet den Infektionsprozess

      Saliba, Antoine-Emmanuel; Westermann, Alexander J.; Vogel, Jörg; HIRI, Helmholtz-Institut für RNA-basierte Infektionsforschung, Josef-Schneider-Straße 2, 97080 Würzburg. Germany. (2017-10-11)
    • Genome organization and DNA accessibility control antigenic variation in trypanosomes.

      Müller, Laura S M; Cosentino, Raúl O; Förstner, Konrad U; Guizetti, Julien; Wedel, Carolin; Kaplan, Noam; Janzen, Christian J; Arampatzi, Panagiota; Vogel, Jörg; Steinbiss, Sascha; et al. (2018-01-01)
      Many evolutionarily distant pathogenic organisms have evolved similar survival strategies to evade the immune responses of their hosts. These include antigenic variation, through which an infecting organism prevents clearance by periodically altering the identity of proteins that are visible to the immune system of the host1. Antigenic variation requires large reservoirs of immunologically diverse antigen genes, which are often generated through homologous recombination, as well as mechanisms to ensure the expression of one or very few antigens at any given time. Both homologous recombination and gene expression are affected by three-dimensional genome architecture and local DNA accessibility2,3. Factors that link three-dimensional genome architecture, local chromatin conformation and antigenic variation have, to our knowledge, not yet been identified in any organism. One of the major obstacles to studying the role of genome architecture in antigenic variation has been the highly repetitive nature and heterozygosity of antigen-gene arrays, which has precluded complete genome assembly in many pathogens. Here we report the de novo haplotype-specific assembly and scaffolding of the long antigen-gene arrays of the model protozoan parasite Trypanosoma brucei, using long-read sequencing technology and conserved features of chromosome folding4. Genome-wide chromosome conformation capture (Hi-C) reveals a distinct partitioning of the genome, with antigen-encoding subtelomeric regions that are folded into distinct, highly compact compartments. In addition, we performed a range of analyses—Hi-C, fluorescence in situ hybridization, assays for transposase-accessible chromatin using sequencing and single-cell RNA sequencing—that showed that deletion of the histone variants H3.V and H4.V increases antigen-gene clustering, DNA accessibility across sites of antigen expression and switching of the expressed antigen isoform, via homologous recombination. Our analyses identify histone variants as a molecular link between global genome architecture, local chromatin conformation and antigenic variation.
    • Global Maps of ProQ Binding In Vivo Reveal Target Recognition via RNA Structure and Stability Control at mRNA 3' Ends.

      Holmqvist, Erik; Li, Lei; Bischler, Thorsten; Barquist, Lars; Vogel, Jörg; HIRI, Helmholtz-Institut für RNA-basierte Infektionsforschung, Josef-Shneider Strasse 2, 97080 Würzburg, Germany. (Elsevier, 2018-06-07)
      The conserved RNA-binding protein ProQ has emerged as the centerpiece of a previously unknown third large network of post-transcriptional control in enterobacteria. Here, we have used in vivo UV crosslinking and RNA sequencing (CLIP-seq) to map hundreds of ProQ binding sites in Salmonella enterica and Escherichia coli. Our analysis of these binding sites, many of which are conserved, suggests that ProQ recognizes its cellular targets through RNA structural motifs found in small RNAs (sRNAs) and at the 3′ end of mRNAs. Using the cspE mRNA as a model for 3′ end targeting, we reveal a function for ProQ in protecting mRNA against exoribonucleolytic activity. Taken together, our results underpin the notion that ProQ governs a post-transcriptional network distinct from those of the well-characterized sRNA-binding proteins, CsrA and Hfq, and suggest a previously unrecognized, sRNA-independent role of ProQ in stabilizing mRNAs.
    • Global snapshots of bacterial RNA networks.

      Hör, Jens; Vogel, Jörg; HIRI, Helmholtz-Institut für RNA-basierte Infektionsforschung,Josef-Schneider-Straße 2, 97080 Würzburg, Germany. (2017-02-01)
    • Grad-seq in a Gram-positive bacterium reveals exonucleolytic sRNA activation in competence control.

      Hör, Jens; Garriss, Geneviève; Di Giorgio, Silvia; Hack, Lisa-Marie; Vanselow, Jens T; Förstner, Konrad U; Schlosser, Andreas; Henriques-Normark, Birgitta; Vogel, Jörg; HIRI, Helmholtz-Institut für RNA-basierte Infektionsforschung, Josef-Shneider Strasse 2, 97080 Würzburg, Germany. (EMBO Press, 2020-03-30)
      RNA-protein interactions are the crucial basis for many steps of bacterial gene expression, including post-transcriptional control by small regulatory RNAs (sRNAs). In stark contrast to recent progress in the analysis of Gram-negative bacteria, knowledge about RNA-protein complexes in Gram-positive species remains scarce. Here, we used the Grad-seq approach to draft a comprehensive landscape of such complexes in Streptococcus pneumoniae, in total determining the sedimentation profiles of ~ 88% of the transcripts and ~ 62% of the proteins of this important human pathogen. Analysis of in-gradient distributions and subsequent tag-based protein capture identified interactions of the exoribonuclease Cbf1/YhaM with sRNAs that control bacterial competence for DNA uptake. Unexpectedly, the nucleolytic activity of Cbf1 stabilizes these sRNAs, thereby promoting their function as repressors of competence. Overall, these results provide the first RNA/protein complexome resource of a Gram-positive species and illustrate how this can be utilized to identify new molecular factors with functions in RNA-based regulation of virulence-relevant pathways.
    • Herpes simplex virus blocks host transcription termination via the bimodal activities of ICP27.

      Wang, Xiuye; Hennig, Thomas; Whisnant, Adam W; Erhard, Florian; Prusty, Bhupesh K; Friedel, Caroline C; Forouzmand, Elmira; Hu, William; Erber, Luke; Chen, Yue; et al. (Nature publishing group, 2020-01-15)
      Infection by viruses, including herpes simplex virus-1 (HSV-1), and cellular stresses causewidespread disruption of transcription termination (DoTT) of RNA polymerase II (RNAPII) inhost genes. However, the underlying mechanisms remain unclear. Here, we demonstrate thatthe HSV-1 immediate early protein ICP27 induces DoTT by directly binding to the essentialmRNA 3’processing factor CPSF. It thereby induces the assembly of a dead-end 3’processing complex, blocking mRNA 3’cleavage. Remarkably, ICP27 also acts as a sequence-dependent activator of mRNA 3’processing for viral and a subset of host transcripts.Our results unravel a bimodal activity of ICP27 that plays a key role in HSV-1-induced hostshutoff and identify CPSF as an important factor that mediates regulation of transcriptiontermination. Thesefindings have broad implications for understanding the regulation oftranscription termination by other viruses, cellular stress and cancer.
    • HHV-6 encoded small non-coding RNAs define an intermediate and early stage in viral reactivation.

      Prusty, Bhupesh K; Gulve, Nitish; Chowdhury, Suvagata Roy; Schuster, Michael; Strempel, Sebastian; Descamps, Vincent; Rudel, Thomas; HIRI, Helmholtz-Institut für RNA-basierte Infektionsforschung, Josef-Shneider Strasse 2, 97080 Würzburg, Germany. (2018-01-01)
      Human herpesvirus 6A and 6B frequently acquires latency. HHV-6 activation has been associated with various human diseases. Germ line inheritance of chromosomally integrated HHV-6 makes viral DNA-based analysis difficult for determination of early stages of viral activation. We characterized early stages of HHV-6 activation using high throughput transcriptomics studies and applied the results to understand virus activation under clinical conditions. Using a latent HHV-6A cell culture model in U2OS cells, we identified an early stage of viral reactivation, which we define as transactivation that is marked by transcription of several viral small non-coding RNAs (sncRNAs) in the absence of detectable increase in viral replication and proteome. Using deep sequencing approaches, we detected previously known as well as a new viral sncRNAs that characterized viral transactivation and differentiated it from latency. Here we show changes in human transcriptome upon viral transactivation that reflect multiple alterations in mitochondria-associated pathways, which was supported by observation of increased mitochondrial fragmentation in virus reactivated cells. Furthermore, we present here a unique clinical case of DIHS/DRESS associated death where HHV-6 sncRNA-U14 was abundantly detected throughout the body of the patient in the presence of low viral DNA. In this study, we have identified a unique and early stage of viral activation that is characterized by abundant transcription of viral sncRNAs, which can serve as an ideal biomarker under clinical conditions.
    • Humanized mice for modeling human infectious disease: challenges, progress, and outlook.

      Legrand, Nicolas; Ploss, Alexander; Balling, Rudi; Becker, Pablo D; Borsotti, Chiara; Brezillon, Nicolas; Debarry, Jennifer; de Jong, Ype; Deng, Hongkui; Di Santo, James P; et al. (2009-07-23)
      Over 800 million people worldwide are infected with hepatitis viruses, human immunodeficiency virus (HIV), and malaria, resulting in more than 5 million deaths annually. Here we discuss the potential and challenges of humanized mouse models for developing effective and affordable therapies and vaccines, which are desperately needed to combat these diseases.
    • Increasing storage stability of freeze-dried plasma using trehalose.

      Brogna, Raffaele; Oldenhof, Harriëtte; Sieme, Harald; Figueiredo, Constança; Kerrinnes, Tobias; Wolkers, Willem F; HIRI, Helmholtz-Institut für RNA-basierte Infektionsforschung, Josef-Shneider Strasse 2, 97080 Würzburg, Germany. (PLOS, 2020-06-11)
      Preservation of blood plasma in the dried state would facilitate long-term storage and transport at ambient temperatures, without the need of to use liquid nitrogen tanks or freezers. The aim of this study was to investigate the feasibility of dry preservation of human plasma, using sugars as lyoprotectants, and evaluate macromolecular stability of plasma components during storage. Blood plasma from healthy donors was freeze dried using 0-10% glucose, sucrose, or trehalose, and stored at various temperatures. Differential scanning calorimetry was used to measure the glass transition temperatures of freeze-dried samples. Protein aggregation, the overall protein secondary structure, and oxidative damage were studied under different storage conditions. Differential scanning calorimetry measurements showed that plasma freeze-dried with glucose, sucrose and trehalose have glass transition temperatures of respectively 72±3.4°C, 46±11°C, 15±2.4°C. It was found that sugars diminish freeze-drying induced protein aggregation in a dose-dependent manner, and that a 10% (w/v) sugar concentration almost entirely prevents protein aggregation. Protein aggregation after rehydration coincided with relatively high contents of β-sheet structures in the dried state. Trehalose reduced the rate of protein aggregation during storage at elevated temperatures, and plasma that is freeze- dried plasma with trehalose showed a reduced accumulation of reactive oxygen species and protein oxidation products during storage. In conclusion, freeze-drying plasma with trehalose provides an attractive alternative to traditional cryogenic preservation
    • In Vivo Cleavage Map Illuminates the Central Role of RNase E in Coding and Non-coding RNA Pathways.

      Chao, Yanjie; Li, Lei; Girodat, Dylan; Förstner, Konrad U; Said, Nelly; Corcoran, Colin; Śmiga, Michał; Papenfort, Kai; Reinhardt, Richard; Wieden, Hans-Joachim; et al. (2017-01-05)
      Understanding RNA processing and turnover requires knowledge of cleavages by major endoribonucleases within a living cell. We have employed TIER-seq (transiently inactivating an endoribonuclease followed by RNA-seq) to profile cleavage products of the essential endoribonuclease RNase E in Salmonella enterica. A dominating cleavage signature is the location of a uridine two nucleotides downstream in a single-stranded segment, which we rationalize structurally as a key recognition determinant that may favor RNase E catalysis. Our results suggest a prominent biogenesis pathway for bacterial regulatory small RNAs whereby RNase E acts together with the RNA chaperone Hfq to liberate stable 3' fragments from various precursor RNAs. Recapitulating this process in vitro, Hfq guides RNase E cleavage of a representative small-RNA precursor for interaction with a mRNA target. In vivo, the processing is required for target regulation. Our findings reveal a general maturation mechanism for a major class of post-transcriptional regulators.
    • Long Noncoding RNA SSR42 Controls Staphylococcus aureus Alpha-Toxin Transcription in Response to Environmental Stimuli.

      Horn, Jessica; Klepsch, Maximilian; Manger, Michelle; Wolz, Christiane; Rudel, Thomas; Fraunholz, Martin; HIRI, Helmholtz-Institut für RNA-basierte Infektionsforschung, Josef-Shneider Strasse 2, 97080 Würzburg, Germany. (2018-11-15)
      Staphylococcus aureus is a human pathogen causing a variety of diseases by versatile expression of a large set of virulence factors that most prominently features the cytotoxic and hemolytic pore-forming alpha-toxin. Expression of alpha-toxin is regulated by an intricate network of transcription factors. These include two-component systems sensing quorum and environmental signals as well as regulators reacting to the nutritional status of the pathogen. We previously identified the repressor of surface proteins (Rsp) as a virulence regulator. Acute cytotoxicity and hemolysis are strongly decreased in rsp mutants, which are characterized by decreased transcription of toxin genes as well as loss of transcription of a 1,232- nucleotide (nt)-long noncoding RNA (ncRNA), SSR42. Here, we show that SSR42 is the effector of Rsp in transcription regulation of the alpha-toxin gene, hla. SSR42 transcription is enhanced after exposure of S. aureus to subinhibitory concentrations of oxacillin which thus leads to an SSR42-dependent increase in hemolysis. Aside from Rsp, SSR42 transcription is under the control of additional global regulators, such as CodY, AgrA, CcpE, and B, but is positioned upstream of the two-component system SaeRS in the regulatory cascade leading to alpha-toxin production. Thus, alpha-toxin expression depends on two long ncRNAs, SSR42 and RNAIII, which control production of the cytolytic toxin on the transcriptional and translational levels, respectively, with SSR42 as an important regulator of SaeRS-dependent S. aureus toxin production in response to environmental and metabolic signals. IMPORTANCE Staphylococcus aureus is a major cause of life-threatening infections. The bacterium expresses alpha-toxin, a hemolysin and cytotoxin responsible for many of the pathologies of S. aureus. Alpha-toxin production is enhanced by subinhibitory concentrations of antibiotics. Here, we show that this process is dependent on the long noncoding RNA, SSR42. Further, SSR42 itself is regulated by several global regulators, thereby integrating environmental and nutritional signals that modulate hemolysis of the pathogen.
    • The Major RNA-Binding Protein ProQ Impacts Virulence Gene Expression in Salmonella enterica Serovar Typhimurium.

      Westermann, Alexander J; Venturini, Elisa; Sellin, Mikael E; Förstner, Konrad U; Hardt, Wolf-Dietrich; Vogel, Jörg; HIRI, Helmholtz-Institut für RNA-basierte Infektionsforschung, Josef-Shneider Strasse 2, 97080 Würzburg, Germany. (Amercan Society of Microbiology, 2019-01-02)
      FinO domain proteins such as ProQ of the model pathogen
    • Molecular mechanism of mRNA repression in by a ProQ-dependent small RNA.

      Smirnov, Alexandre; Wang, Chuan; Drewry, Lisa L; Vogel, Jörg; HIRI, Helmoltz-Institut für RNA-basierteInfektionsforschung, Josef-Schneider-Strasse 2, 97080 Würzburg, Germany. (2017-04-13)
      Research into post-transcriptional control of mRNAs by small noncoding RNAs (sRNAs) in the model bacteria Escherichia coli and Salmonella enterica has mainly focused on sRNAs that associate with the RNA chaperone Hfq. However, the recent discovery of the protein ProQ as a common binding partner that stabilizes a distinct large class of structured sRNAs suggests that additional RNA regulons exist in these organisms. The cellular functions and molecular mechanisms of these new ProQ-dependent sRNAs are largely unknown. Here, we report in Salmonella Typhimurium the mode-of-action of RaiZ, a ProQ-dependent sRNA that is made from the 30 end of the mRNA encoding ribosome-inactivating protein RaiA. We show that RaiZ is a base-pairing sRNA that represses in trans the mRNA of histone-like protein HU-a. RaiZ forms an RNA duplex with the ribosome-binding site of hupA mRNA, facilitated by ProQ, to prevent 30S ribosome loading and protein synthesis of HU-a. Similarities and differences between ProQ- and Hfqmediated regulation will be discussed.