• Integrative functional genomics decodes herpes simplex virus 1.

      Whisnant, Adam W; Jürges, Christopher S; Hennig, Thomas; Wyler, Emanuel; Prusty, Bhupesh; Rutkowski, Andrzej J; L'hernault, Anne; Djakovic, Lara; Göbel, Margarete; Döring, Kristina; et al. (NPG, 2020-04-27)
      The predicted 80 open reading frames (ORFs) of herpes simplex virus 1 (HSV-1) have been intensively studied for decades. Here, we unravel the complete viral transcriptome and translatome during lytic infection with base-pair resolution by computational integration of multi-omics data. We identify a total of 201 transcripts and 284 ORFs including all known and 46 novel large ORFs. This includes a so far unknown ORF in the locus deleted in the FDA-approved oncolytic virus Imlygic. Multiple transcript isoforms expressed from individual gene loci explain translation of the vast majority of ORFs as well as N-terminal extensions (NTEs) and truncations. We show that NTEs with non-canonical start codons govern the subcellular protein localization and packaging of key viral regulators and structural proteins. We extend the current nomenclature to include all viral gene products and provide a genome browser that visualizes all the obtained data from whole genome to single-nucleotide resolution.
    • Merging bioresponsive release of insulin-like growth factor I with 3D printable thermogelling hydrogels

      Beudert, Matthias; Hahn, Lukas; Horn, Anselm H.C.; Hauptstein, Niklas; Sticht, Heinrich; Meinel, Lorenz; Luxenhofer, Robert; Gutmann, Marcus; Lühmann, Tessa (2022-07-01)
      3D printing of biomaterials enables spatial control of drug incorporation during automated manufacturing. This study links bioresponsive release of the anabolic biologic, insulin-like growth factor-I (IGF-I) in response to matrix metalloproteinases (MMP) to 3D printing using the block copolymer of poly(2-methyl-2-oxazoline) and thermoresponsive poly(2-n-propyl-2-oxazine) (POx-b-POzi). For that, a chemo-enzymatic synthesis was deployed, ligating IGF-I enzymatically to a protease sensitive linker (PSL), which was conjugated to a POx-b-POzi copolymer. The product was blended with the plain thermogelling POx-b-POzi hydrogel. MMP exposure of the resulting hydrogel triggered bioactive IGF-I release. The bioresponsive IGF-I containing POx-b-POzi hydrogel system was further detailed for shape control and localized incorporation of IGF-I via extrusion 3D printing for future applications in biomedicine and biofabrication. © 2022 Elsevier B.V.
    • An RNA biology perspective on species-specific programmable RNA antibiotics.

      Vogel, Jörg; HIRI, Helmholtz-Institut für RNA-basierte Infektionsforschung, Josef-Shneider Strasse 2, 97080 Würzburg, Germany. (Wiley, 2020-03-17)
      Our body is colonized by a vast array of bacteria the sum of which forms our microbiota. The gut alone harbors >1,000 bacterial species. An understanding of their individual or synergistic contributions to human health and disease demands means to interfere with their functions on the species level. Most of the currently available antibiotics are broad-spectrum, thus too unspecific for a selective depletion of a single species of interest from the microbiota. Programmable RNA antibiotics in the form of short antisense oligonucleotides (ASOs) promise to achieve precision manipulation of bacterial communities. These ASOs are coupled to small peptides that carry them inside the bacteria to silence mRNAs of essential genes, for example, to target antibiotic-resistant pathogens as an alternative to standard antibiotics. There is already proof-of-principle with diverse bacteria, but many open questions remain with respect to true species specificity, potential off-targeting, choice of peptides for delivery, bacterial resistance mechanisms and the host response. While there is unlikely a one-fits-all solution for all microbiome species, I will discuss how recent progress in bacterial RNA biology may help to accelerate the development of programmable RNA antibiotics for microbiome editing and other applications.
    • Severe COVID-19 Is Marked by a Dysregulated Myeloid Cell Compartment.

      Schulte-Schrepping, Jonas; Reusch, Nico; Paclik, Daniela; Baßler, Kevin; Schlickeiser, Stephan; Zhang, Bowen; Krämer, Benjamin; Krammer, Tobias; Brumhard, Sophia; Bonaguro, Lorenzo; et al. (Elsevier /Cell Press), 2020-08-05)
      Coronavirus disease 2019 (COVID-19) is a mild to moderate respiratory tract infection, however, a subset of patients progress to severe disease and respiratory failure. The mechanism of protective immunity in mild forms and the pathogenesis of severe COVID-19 associated with increased neutrophil counts and dysregulated immune responses remain unclear. In a dual-center, two-cohort study, we combined single-cell RNA-sequencing and single-cell proteomics of whole-blood and peripheral-blood mononuclear cells to determine changes in immune cell composition and activation in mild versus severe COVID-19 (242 samples from 109 individuals) over time. HLA-DRhiCD11chi inflammatory monocytes with an interferon-stimulated gene signature were elevated in mild COVID-19. Severe COVID-19 was marked by occurrence of neutrophil precursors, as evidence of emergency myelopoiesis, dysfunctional mature neutrophils, and HLA-DRlo monocytes. Our study provides detailed insights into the systemic immune response to SARS-CoV-2 infection and reveals profound alterations in the myeloid cell compartment associated with severe COVID-19.