Show simple item record

dc.contributor.authorDeng, Zhi-Luo
dc.contributor.authorSzafrański, Szymon P
dc.contributor.authorJarek, Michael
dc.contributor.authorBhuju, Sabin
dc.contributor.authorWagner-Döbler, Irene
dc.date.accessioned2017-07-05T07:43:44Z
dc.date.available2017-07-05T07:43:44Z
dc.date.issued2017-06-16
dc.identifier.citationDysbiosis in chronic periodontitis: Key microbial players and interactions with the human host. 2017, 7 (1):3703 Sci Repen
dc.identifier.issn2045-2322
dc.identifier.pmid28623321
dc.identifier.doi10.1038/s41598-017-03804-8
dc.identifier.urihttp://hdl.handle.net/10033/620988
dc.description.abstractPeriodontitis is an extremely prevalent disease worldwide and is driven by complex dysbiotic microbiota. Here we analyzed the transcriptional activity of the periodontal pocket microbiota from all domains of life as well as the human host in health and chronic periodontitis. Bacteria showed strong enrichment of 18 KEGG functional modules in chronic periodontitis, including bacterial chemotaxis, flagellar assembly, type III secretion system, type III CRISPR-Cas system, and two component system proteins. Upregulation of these functions was driven by the red-complex pathogens and candidate pathogens, e.g. Filifactor alocis, Prevotella intermedia, Fretibacterium fastidiosum and Selenomonas sputigena. Nine virulence factors were strongly up-regulated, among them the arginine deiminase arcA from Porphyromonas gingivalis and Mycoplasma arginini. Viruses and archaea accounted for about 0.1% and 0.22% of total putative mRNA reads, respectively, and a protozoan, Entamoeba gingivalis, was highly enriched in periodontitis. Fourteen human transcripts were enriched in periodontitis, including a gene for a ferric iron binding protein, indicating competition with the microbiota for iron, and genes associated with cancer, namely nucleolar phosphoprotein B23, ankyrin-repeat domain 30B-like protein and beta-enolase. The data provide evidence on the level of gene expression in vivo for the potentially severe impact of the dysbiotic microbiota on human health.
dc.language.isoenen
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/*
dc.titleDysbiosis in chronic periodontitis: Key microbial players and interactions with the human host.en
dc.typeArticleen
dc.contributor.departmentHelmholtz Centre for infection research, Inhoffenstr. 7., 38124 Braunschweig, Germany.en
dc.identifier.journalScientific reportsen
refterms.dateFOA2018-06-12T17:22:09Z
html.description.abstractPeriodontitis is an extremely prevalent disease worldwide and is driven by complex dysbiotic microbiota. Here we analyzed the transcriptional activity of the periodontal pocket microbiota from all domains of life as well as the human host in health and chronic periodontitis. Bacteria showed strong enrichment of 18 KEGG functional modules in chronic periodontitis, including bacterial chemotaxis, flagellar assembly, type III secretion system, type III CRISPR-Cas system, and two component system proteins. Upregulation of these functions was driven by the red-complex pathogens and candidate pathogens, e.g. Filifactor alocis, Prevotella intermedia, Fretibacterium fastidiosum and Selenomonas sputigena. Nine virulence factors were strongly up-regulated, among them the arginine deiminase arcA from Porphyromonas gingivalis and Mycoplasma arginini. Viruses and archaea accounted for about 0.1% and 0.22% of total putative mRNA reads, respectively, and a protozoan, Entamoeba gingivalis, was highly enriched in periodontitis. Fourteen human transcripts were enriched in periodontitis, including a gene for a ferric iron binding protein, indicating competition with the microbiota for iron, and genes associated with cancer, namely nucleolar phosphoprotein B23, ankyrin-repeat domain 30B-like protein and beta-enolase. The data provide evidence on the level of gene expression in vivo for the potentially severe impact of the dysbiotic microbiota on human health.


Files in this item

Thumbnail
Name:
Deng et al.pdf
Size:
2.802Mb
Format:
PDF
Description:
Open Access publication

This item appears in the following Collection(s)

Show simple item record

http://creativecommons.org/licenses/by-nc-sa/4.0/
Except where otherwise noted, this item's license is described as http://creativecommons.org/licenses/by-nc-sa/4.0/