• Archaea box C/D enzymes methylate two distinct substrate rRNA sequences with different efficiency.

      Graziadei, Andrea; Masiewicz, Pawel; Lapinaite, Audrone; Carlomagno, Teresa; Helmholtz-Zentrum für Infektionsforschung GmbH, Inhoffenstr. 7, 38124 Braunschweig, Germany. (2016-05)
      RNA modifications confer complexity to the 4-nucleotide polymer; nevertheless, their exact function is mostly unknown. rRNA 2'-O-ribose methylation concentrates to ribosome functional sites and is important for ribosome biogenesis. The methyl group is transferred to rRNA by the box C/D RNPs: The rRNA sequence to be methylated is recognized by a complementary sequence on the guide RNA, which is part of the enzyme. In contrast to their eukaryotic homologs, archaeal box C/D enzymes can be assembled in vitro and are used to study the mechanism of 2'-O-ribose methylation. In Archaea, each guide RNA directs methylation to two distinct rRNA sequences, posing the question whether this dual architecture of the enzyme has a regulatory role. Here we use methylation assays and low-resolution structural analysis with small-angle X-ray scattering to study the methylation reaction guided by the sR26 guide RNA fromPyrococcus furiosus We find that the methylation efficacy at sites D and D' differ substantially, with substrate D' turning over more efficiently than substrate D. This observation correlates well with structural data: The scattering profile of the box C/D RNP half-loaded with substrate D' is similar to that of the holo complex, which has the highest activity. Unexpectedly, the guide RNA secondary structure is not responsible for the functional difference at the D and D' sites. Instead, this difference is recapitulated by the nature of the first base pair of the guide-substrate duplex. We suggest that substrate turnover may occur through a zip mechanism that initiates at the 5'-end of the product.
    • High-resolution structure of eukaryotic Fibrillarin interacting with Nop56 amino-terminal domain.

      Höfler, Simone; Lukat, Peer; Blankenfeldt, Wulf; Carlomagno, Teresa; HZI,Helmholtz-Zentrum für Infektionsforschung GmbH, Inhoffenstr. 7,38124 Braunschweig, Germany. (Cold Spring Harbour Laboratory Press, 2021-01-22)
      Ribosomal RNA (rRNA) carries extensive 2'-O-methyl marks at functionally important sites. This simple chemical modification is thought to confer stability, promote RNA folding, and contribute to generate a heterogenous ribosome population with a yet-uncharacterized function. 2'-O-methylation occurs both in archaea and eukaryotes and is accomplished by the Box C/D RNP enzyme in an RNA-guided manner. Extensive and partially conflicting structural information exists for the archaeal enzyme, while no structural data is available for the eukaryotic enzyme. The yeast Box C/D RNP consists of a guide RNA, the RNA-primary binding protein Snu13, the two scaffold proteins Nop56 and Nop58, and the enzymatic module Nop1. Here we present the high-resolution structure of the eukaryotic Box C/D methyltransferase Nop1 from Saccharomyces cerevisiae bound to the amino-terminal domain of Nop56. We discuss similarities and differences between the interaction modes of the two proteins in archaea and eukaryotes and demonstrate that eukaryotic Nop56 recruits the methyltransferase to the Box C/D RNP through a protein-protein interface that differs substantially from the archaeal orthologs. This study represents a first achievement in understanding the evolution of the structure and function of these proteins from archaea to eukaryotes.
    • The structure of the SOLE element of oskar mRNA.

      Simon, Bernd; Masiewicz, Pawel; Ephrussi, Anne; Carlomagno, Teresa; Helmholtz Centre for Infection Research, Inhoffenstraße 7, 38124 Braunschweig, Germany. (2015-06-18)
      mRNA localization by active transport is a regulated process that requires association of mRNPs with protein motors for transport along either the microtubule or the actin cytoskeleton. oskar mRNA localization at the posterior pole of the Drosophila oocyte requires a specific mRNA sequence, termed the SOLE, which comprises nucleotides of both exon 1 and exon 2 and is assembled upon splicing. The SOLE folds into a stem-loop structure. Both SOLE RNA and the exon junction complex (EJC) are required for oskar mRNA transport along the microtubules by kinesin. The SOLE RNA likely constitutes a recognition element for a yet unknown protein, which either belongs to the EJC or functions as a bridge between the EJC and the mRNA. Here, we determine the solution structure of the SOLE RNA by Nuclear Magnetic Resonance spectroscopy. We show that the SOLE forms a continuous helical structure, including a few noncanonical base pairs, capped by a pentanucleotide loop. The helix displays a widened major groove, which could accommodate a protein partner. In addition, the apical helical segment undergoes complex dynamics, with potential functional significance.