• The SARS-CoV-2 RNA-protein interactome in infected human cells.

      Schmidt, Nora; Lareau, Caleb A; Keshishian, Hasmik; Ganskih, Sabina; Schneider, Cornelius; Hennig, Thomas; Melanson, Randy; Werner, Simone; Wei, Yuanjie; Zimmer, Matthias; et al. (Nature research, 2020-12-21)
      Characterizing the interactions that SARS-CoV-2 viral RNAs make with host cell proteins during infection can improve our understanding of viral RNA functions and the host innate immune response. Using RNA antisense purification and mass spectrometry, we identified up to 104 human proteins that directly and specifically bind to SARS-CoV-2 RNAs in infected human cells. We integrated the SARS-CoV-2 RNA interactome with changes in proteome abundance induced by viral infection and linked interactome proteins to cellular pathways relevant to SARS-CoV-2 infections. We demonstrated by genetic perturbation that cellular nucleic acid-binding protein (CNBP) and La-related protein 1 (LARP1), two of the most strongly enriched viral RNA binders, restrict SARS-CoV-2 replication in infected cells and provide a global map of their direct RNA contact sites. Pharmacological inhibition of three other RNA interactome members, PPIA, ATP1A1, and the ARP2/3 complex, reduced viral replication in two human cell lines. The identification of host dependency factors and defence strategies as presented in this work will improve the design of targeted therapeutics against SARS-CoV-2.
    • Small synthetic molecule-stabilized RNA pseudoknot as an activator for -1 ribosomal frameshifting.

      Matsumoto, Saki; Caliskan, Neva; Rodnina, Marina V; Murata, Asako; Nakatani, Kazuhiko; HIRI, Helmoltz-Institut für RNA-basierteInfektionsforschung, Josef-Schneider-Strasse 2, 97080 Würzburg, Germany. (2018-08-02)
      Programmed -1 ribosomal frameshifting (-1PRF) is a recoding mechanism to make alternative proteins from a single mRNA transcript. -1PRF is stimulated by cis-acting signals in mRNA, a seven-nucleotide slippery sequence and a downstream secondary structure element, which is often a pseudoknot. In this study we engineered the frameshifting pseudoknot from the mouse mammary tumor virus to respond to a rationally designed small molecule naphthyridine carbamate tetramer (NCTn). We demonstrate that NCTn can stabilize the pseudoknot structure in mRNA and activate -1PRF both in vitro and in human cells. The results illustrate how NCTn-inducible -1PRF may serve as an important component of the synthetic biology toolbox for the precise control of gene expression using small synthetic molecules.
    • Thermodynamic control of -1 programmed ribosomal frameshifting.

      Bock, Lars V; Caliskan, Neva; Korniy, Natalia; Peske, Frank; Rodnina, Marina V; Grubmüller, Helmut; HIRI, Helmholtz-Institut für RNA-basierte Infektionsforschung, Josef-Shneider Strasse 2, 97080 Würzburg, Germany. (Nature Research, 2019-10-10)
      mRNA contexts containing a 'slippery' sequence and a downstream secondary structure element stall the progression of the ribosome along the mRNA and induce its movement into the -1 reading frame. In this study we build a thermodynamic model based on Bayesian statistics to explain how -1 programmed ribosome frameshifting can work. As training sets for the model, we measured frameshifting efficiencies on 64 dnaX mRNA sequence variants in vitro and also used 21 published in vivo efficiencies. With the obtained free-energy difference between mRNA-tRNA base pairs in the 0 and -1 frames, the frameshifting efficiency of a given sequence can be reproduced and predicted from the tRNA-mRNA base pairing in the two frames. Our results further explain how modifications in the tRNA anticodon modulate frameshifting and show how the ribosome tunes the strength of the base-pair interactions.